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Motivation
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supported functions in Fourier and space.

Examples:
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Motivation

Real-life signals or measurements can be assimilated to compactly
supported functions in Fourier and space.

Examples:

e “. AHHHHHHHHHHHHHH ..": time-limited sound, with a finite
range of frequencies (human voice);

® More generally, signals coming from natural processes

(geomagnetism, geophysics, biomedical, planetary sciences, ...) are
spatially and spectrally localized;

e Fourier optics (long range propagation ~ Fourier transform).
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Fourier notations:
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Space-limiting operator

Let 7> 0, and D := {f € L*(R)[supp f C 177} A function f € D
is said to be space-limited.

Define D the space-limiting operator: for f € L?(R),

(DF) (@) = F@) 1 pp(), @R
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Band-limiting operator

Let 2 >0, and B := {f € L2(R)’supp fc 1[_9791}. That is,

fe® = fla / Fe)erede.
T or
A function f € ‘B is said to be band-limited.

Define B the band-limiting operator. for f € L?(R),

(B)(w) = 5 / Fleyersde.
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Goal

Find functions that are the most “concentrated” in both space and Fourier
domains.
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Goal

Find functions that are the most “concentrated” in both space and Fourier
domains.

Define the concentration ratio

IBDf12: 5,
7o

€ (0,1).

We look for

arg max A\.
fel2(R)

Intuitively: such a maximizer f is very slightly modified when the operator
BD is applied, i.e. Df ~ fand Bf ~ .
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sinc kernel

We compute: for f € L3(R),

BDf Ry S T () (s)dtds
11228 f_T\ ()|2dt '

9/32



sinc kernel

We compute: for f € L3(R),

BDf Ry S T () (s)dtds
11228 f_T| ()|2dt '

Maximizer of \ is given by f € L?(R) eigenfunction of an integral
operator associated to largest eigenvalue A\, € (0,1).
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Integral operator

The integral operator at hand is defined by

SO Tsin(QUg—a2)) , . . Fel
En@) = [ EEER s Gd, Fe T

After a space renormalization, we can consider the concentration operator
Concentration operator

(X 1) () :/ sin (7' (y — x))

-1 W(y—J))

fy)dy, =e[-1,1].

Denote ¢ := QT

We are looking for its eigenpairs (};, ¢;).
NB: we can extend ; to R.
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Some properties of the concentration operator

Proposition

® The eigenvalues are real and countable:

and the eigenfunctions {¢;} _are real, and either even or odd.
jeN

® They are complete in IL2([—1,1]) as well as L?(R):

/1/1 (z)dx =, ;, /1/1 r)dr = N0, ;

e Commuting property..
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Commuting property

Slepian and Pollak showed! that there exists 7 a differential operator such
that XP = PX, and

Commuting differential operator

d

@n =+ [a - L @] - s,

This commutation property is at the heart of most papers, and can be
used to obtain efficiently the eigenvectors ¢; of X'.

ID. Slepian and H. O. Pollak. “Prolate Spheroidal Wave Functions, Fourier Analysis
and Uncertainty - I". In: Bell System Technical Journal 40.1-(Jans 1961).
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A fool's attempt

Why bother with the commuting differential operator??
Let's try a classical eigendecomposition algorithm...

Discretize XX using N discretization points.
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A fool's attempt

Why bother with the commuting differential operator??

Let's try a classical eigendecomposition algorithm...
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Figure: Eigenvalues of the discretized concentration matrix,

N =151, =0.1-2n.
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A fool's attempt
Why bother with the commuting differential operator??

Let's try a classical eigendecomposition algorithm...

eig === eigh — = Tri-diagonal formulation
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0.1
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—0.1 1

—0.2 1

0 20 40 60 80 100 120 140

Figure: Eigenvectors of the discretized concentration matrix,
N =151,2=0.1-27.
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Why the numerical issue?
Numerically, we are in the following situation:

Lemma \

Let A a n x n matrix, with an eigenvalue X\ of multiplicity m < n. Let
Uy, ..., U,,, m independant eigenvectors of A associated to the eigen-
value X. Then any linear combination of u, ..., u,, is also an eigenvector

of A associated to \.

Proof.
Let ¢y, ..., ¢, € C,

A (i ciui) = iciAui = ici)\ui = (i ciui> .
=1 ' '
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Why consider a generalized problem?

Motivation: again, Fourier optics.
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Why consider a generalized problem?

Motivation: again, Fourier optics.

e

(1)
m:

Figure: duck: Hugo E.©

17/32



Generalized masks

Introduce the space and Fourier filters/masks: mg, mp € L2(R%; C).

Similarly to the introductory example, consider the space- and
Fourier-limiting operators:

(Msg)(x) =mg(x)g(x),  (Mpg)(x) =T [mpFg]] (z).
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Generalized masks

Introduce the space and Fourier filters/masks: mg, mp € L2(R%; C).

Similarly to the introductory example, consider the space- and
Fourier-limiting operators:

(Msg)(x) =mg(x)g(x),  (Mpg)(x) =T [mpFg]] (z).

Introductory example

(D)@ = F@ (), (BH) =5 [ Fepesude,
—Q
SO
mg(z) = 111, mp(§) = 1_q,q)(&)-
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Goal

Consider the maximization problem:

”MFMSfHL2 R4 ;C)
arg max , (1)
reL2 @) |f1E g

its solution is again given by the eigenfunctions of some integral operator...
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Goal

Consider the maximization problem:

”MFMSfHL2 R4;C)

arg
171 e,

; (1)

max
feL?(R4C)

its solution is again given by the eigenfunctions of some integral operator...

Generalized concentration kernel
For f € L2(R%;C), define

(K f)(@) == / K(z,y)f(y)dy, z R,
Rd

where

K(z,y) = mg(x)ms(y) 7 [|mpl®] (y —2), =,y €RL
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Proposition

The concentration operator X is a Hilbert-Schmidt operator and:

@ The kernel K is Hermitian, and the operator X is self-adjoint,
compact, and positive semi-definite.

® The countable family {wi}zl of eigenfunctions of X is
orthonormal for the usual IL?(R¢; C) inner product, the associated

. o0 .

eigenvalues {)‘i}i:1 are real, nonnegative, and we can order them
sothat 1 >\, >\, >0,¢>1.

© The orthonormal basis of eigenfunctions {wi}zl solve the
maximization problem (1), and the maximal values attained are
the eigenvalues {\;}™° .

O For large n, A\, = o(n"1/?).

® Suppose |mz|? is even, and my is real, then X is real-valued for
real inputs.
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Some experiments...

The generalized problem accepts any 1.2 function for mg and 7, we now
focus on 2d examples with

mg=1p , and  mp= 15(0,0.3x2m)>

with D, C R?.

The generalized concentration operator is discretized using N; x N, points
— matrix K.
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A fool’s attempt (again)
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Figure: mg = 1pg,0.8)-
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A fool’s attempt (again)

%10-549.999 x 10~ Re(\,)
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Figure: Eigenvalues with a direct decomposition, in the case D; = Disc(0,0.8).
They are the exact eigenvalues up to some tolerance n = 107°.
N; =50, N, = 50.
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A fool’s attempt (again)

Ay =1.00000E + 00

Az =1.00000E + 00

T
o

A3 =1.00000E + 00

Ay =9.99999E - 01

5 =9.99D98 E— 01 o =9.99D98 E— 01 ,=9.99b97E -0 s =9.99b96 E— 0
1
& 0 - 1
-1 o= 9.99D95E — 0’ Nip = 9.99994E 01 X, = 9.99992E — 01
1
& o 1

1

Xis=9.99982E 01 X5 = 9.99980E — 01

T T T
-1 0 1 -1 0 1 -1 0 1
Ty Ty T
T T T
—0.05 0.00 0.05

0.’10
Figure: Eigenvectors obtained with a direct decomposition, in the case
D, = Disc(0,0.8). N; =50, N, = 50.
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A fool’s attempt (again)
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Figure: Fourier transform of eigenvectors obtained with a direct decomposition, in
the case D; = Disc(0,0.8). N; =50, N, = 50.
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Back to 1D

The crucial point is that the eigenvalues depends on ¢ = QT:

T'—-0= c—>0= A;—0,Vj.

Consider a scaling
L peyme) 2y -1

E£—0Q

Q.: What happens to eigenvalues \,, when ¢ varies?
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Back to 1D

The only requirement is that

ple) — 1, and p(e) — 0,

e—0 e—+00

so consider for example

1
ple) = W-

Modified space mask: mf] =1 ) ule) xlel — Kl
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Behavior of eigenvalues
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Behavior of eigenvalues
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Behavior of eigenvalues
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Behavior of eigenvalues
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Behavior of eigenvalues
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Behavior of eigenvalues

e=10E+01
100 Mo
0.75 4
. ]
~ 0.50
0.25 4
]
0 5 10 15 20 25 30
n
e=10E+01
1.00 o
0.75 1
B
Ty 0.50 1
0.25 1
OUU 1 T T T T T
-1.0 —0.5 0.0 0.5 1.0
x

25/32



What's the point?

When ¢ — 0, the eigenvalues move away from each other.

!

One can get the associated eigenvectors without confusion.
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What's the point?

When ¢ — 0, the eigenvalues move away from each other.

!

One can get the associated eigenvectors without confusion.

Algorithm idea:
® start withe > 1 = )\g?] > )‘Ei]rl — Ugé] e, of KI¢ OK:
@® compute v := UBS]K[O]UBE] (concentration ratio of v!°));

J
[0] l¢] [0],
j save v, approx. of v

O take € smaller and repeat.

© if v close enough to A

Not truly eigenvectors of the initial problem, but..

® The eigenvectors of the modified problem are “close enough” to
eigenvectors of the initial concentration problem;

® They are still an orthonormal basis of R¥1+Na,

= = = = =T=
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A, = 1.00000E + 00 Ay = 9.99999E — 01 A3 = 1.00000E + 00
0.25

0.24

0.04

Figure: First 12 eigenpairs with the varying spacemask procedure (solid blue
curve), in 1D, with N =100, 2 = 0.1 - 2. The exact eigenvectors are given by
orange dash curves
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To be compared with a direct eigendecomposition...

A = 1.00000E + 00 Ay = 1.00000E + 00 A3 = 1.00000E + 00

7 0.24
0.2 FAY !

Ag = 1.00000E + 00

0.09

Ato = 1.O000OE + 00 A1y = L.O0000E + 00
0.2 0.21
0.04 0.04
—0.21 T T T T T
-1 0 1 -1 0 1

Figure: First 12 eigenpairs with an eigendecomposition (solid blue curve), in 1D,
with NV =100, = 0.1 - 27. The exact eigenvectors are given by orange dash

curves. 2732



A 2D example

Same idea works in dimension d > 1.

1.00 1.00
0.75 1 0.75
0.50 - 0.50 -
0.25 1 0.25 1
£ 0.00 1 O O £ 0.00 1
—0.25 1 ] —0.25
~0.50 — —0.50 1
~0.75 1 —0.75

~1.00 . . . ~1.00 : . .
10 -05 00 0.5 10 ~L0  -05 00 0.5 1.0
€y Z1
(a) Cat-head shape. (b) Set-valued function D, (e), with

D, = D,(0) = Cat-head.

Figure: A (poorly drawn) cat-head shape, as well as the set-valued function
D (g), decreasing for the inclusion relation, and such that D, (0) = Cat-head.
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Cat-head
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(a) Direct eigendecomposition.

(b) Varying space mask procedure.

29/32



Cat-head in Fourier
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(a) Direct eigendecomposition. (b) Varying space mask procedure.
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Conclusion & Perspectives
Conclusions:

® We can recover almost-maximizers of the concentration ratio, down
to some given numerical tolerance;

® \We can bypass the issue of eigenvalues being too close to each other;

® The approximate eigenvectors are still a basis of L?(R), and do not
depend on the eigenvector algorithm used — numerically more robust.

Approximate eigenvectors obtained with the varying space mask procedure
are a good alternative to the true eigenvectors!
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Conclusion & Perspectives
Conclusions:
® We can recover almost-maximizers of the concentration ratio, down
to some given numerical tolerance;
® \We can bypass the issue of eigenvalues being too close to each other;

® The approximate eigenvectors are still a basis of L?(R), and do not
depend on the eigenvector algorithm used — numerically more robust.

Approximate eigenvectors obtained with the varying space mask procedure
are a good alternative to the true eigenvectors!

Perspectives:

® Better understand why the varying space mask procedure yields
vectors more localized than those we are looking for;

® Try the dynamical low-rank approach with a smoothing of the

spacemask, to avoid “singularities” when eigenvalues get too close to
each other;

® Try extrapolation techniques to really go down to € = 0.
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