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Motivation

Real-life signals or measurements can be assimilated to compactly
supported functions in Fourier and space.

Examples:
• “… AHHHHHHHHHHHHHH …”

: time-limited sound, with a finite
range of frequencies (human voice);

• More generally, signals coming from natural processes
(geomagnetism, geophysics, biomedical, planetary sciences, …) are
spatially and spectrally localized;

• Fourier optics (long range propagation ≈ Fourier transform).
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Fourier notations:

ℱ[𝑓](𝜉) = ̂𝑓(𝜉) ∶= ∫
ℝ𝑑

𝑓(𝑥)𝑒−𝑖𝜉⋅𝑥𝑑𝑥,

ℱ−1[𝑔](𝑥) ∶= 1
(2𝜋)𝑑 ∫

ℝ𝑑

𝑔(𝜉)𝑒𝑖𝜉⋅𝑥𝑑𝜉.
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Space-limiting operator

Let 𝑇 > 0, and 𝔇 ∶= {𝑓 ∈ 𝕃2(ℝ)∣supp 𝑓 ⊂ 1[−𝑇 ,𝑇 ]}. A function 𝑓 ∈ 𝔇
is said to be space-limited.

Define 𝒟 the space-limiting operator: for 𝑓 ∈ 𝕃2(ℝ),

(𝒟𝑓)(𝑥) ∶= 𝑓(𝑥)1[−𝑇 ,𝑇 ](𝑥), 𝑥 ∈ ℝ.
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Band-limiting operator

Let Ω > 0, and 𝔅 ∶= {𝑓 ∈ 𝕃2(ℝ)∣supp ̂𝑓 ⊂ 1[−Ω,Ω]}. That is,

𝑓 ∈ 𝔅 ⟹ 𝑓(𝑥) = 1
2𝜋

∫
Ω

−Ω

̂𝑓(𝜉)𝑒𝑖𝜉⋅𝑥𝑑𝜉.

A function 𝑓 ∈ 𝔅 is said to be band-limited.

Define ℬ the band-limiting operator: for 𝑓 ∈ 𝕃2(ℝ),

(ℬ𝑓)(𝑥) ∶= 1
2𝜋

∫
Ω

−Ω

̂𝑓(𝜉)𝑒𝑖𝜉⋅𝑥𝑑𝜉.
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Goal

Find functions that are the most “concentrated” in both space and Fourier
domains.

Define the concentration ratio

𝜆 ∶=
‖ℬ𝒟𝑓‖2

𝕃2(ℝ)

‖𝑓‖2
𝕃2(ℝ)

∈ (0, 1).

We look for
arg max

𝑓∈𝕃2(ℝ)
𝜆.

Intuitively: such a maximizer 𝑓 is very slightly modified when the operator
ℬ𝒟 is applied, i.e. 𝒟𝑓 ≈ 𝑓 and ℬ𝑓 ≈ 𝑓.
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sinc kernel

We compute: for 𝑓 ∈ 𝕃2(ℝ),

𝜆 =
‖ℬ𝒟𝑓‖2

𝕃2(ℝ)

‖𝑓‖2
𝕃2(ℝ)

=
∫𝑇

−𝑇
∫𝑇

−𝑇
sin(Ω(𝑡−𝑠))

𝜋(𝑡−𝑠) 𝑓(𝑡)𝑓(𝑠)𝑑𝑡𝑑𝑠

∫𝑇
−𝑇

|𝑓(𝑡)|2𝑑𝑡
.

Maximizer of 𝜆 is given by 𝑓 ∈ 𝕃2(ℝ) eigenfunction of an integral
operator associated to largest eigenvalue 𝜆1 ∈ (0, 1).
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Integral operator
The integral operator at hand is defined by

(𝒦̃𝑓)( ̃𝑥) ∶= ∫
𝑇

−𝑇

sin (Ω( ̃𝑦 − ̃𝑥))
𝜋( ̃𝑦 − ̃𝑥)

𝑓( ̃𝑦)𝑑 ̃𝑦, ̃𝑥 ∈ [−𝑇 , 𝑇 ].

After a space renormalization, we can consider the concentration operator

Concentration operator

(𝒦𝑓) (𝑥) = ∫
1

−1

sin (Ω𝑇 (𝑦 − 𝑥))
𝜋(𝑦 − 𝑥)

𝑓(𝑦)𝑑𝑦, 𝑥 ∈ [−1, 1].

Denote 𝑐 ∶= Ω𝑇.

We are looking for its eigenpairs (𝝀𝐣, 𝝍𝐣).
NB: we can extend 𝜓𝑗 to ℝ.
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Some properties of the concentration operator

Proposition

• The eigenvalues are real and countable:

1 > 𝜆0 > 𝜆1 > ⋯ > 0,

and the eigenfunctions {𝜓𝑗}𝑗∈ℕ
are real, and either even or odd.

• They are complete in 𝕃2([−1, 1]) as well as 𝕃2(ℝ):

∫
ℝ

𝜓𝑖(𝑥)𝜓𝑗(𝑥)𝑑𝑥 = 𝛿𝑖,𝑗, ∫
1

−1
𝜓𝑖(𝑥)𝜓𝑗(𝑥)𝑑𝑥 = 𝜆𝑖𝛿𝑖,𝑗.

• Commuting property…

12 / 32



Commuting property

Slepian and Pollak showed1 that there exists 𝒫 a differential operator such
that 𝒦𝒫 = 𝒫𝒦, and

Commuting differential operator

(𝒫𝑓)(𝑥) = 𝑑
𝑑𝑥

[(1 − 𝑥2) 𝑑𝑓
𝑑𝑥

(𝑥)] − 𝑐𝑥2𝑓(𝑥).

This commutation property is at the heart of most papers, and can be
used to obtain efficiently the eigenvectors 𝜓𝑗 of 𝒦.

1D. Slepian and H. O. Pollak. “Prolate Spheroidal Wave Functions, Fourier Analysis
and Uncertainty - I”. In: Bell System Technical Journal 40.1 (Jan. 1961).
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A fool’s attempt

Why bother with the commuting differential operator??

Let’s try a classical eigendecomposition algorithm…

Discretize 𝒦 using 𝑁 discretization points.
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Figure: Eigenvalues of the discretized concentration matrix,
𝑁 = 151, Ω = 0.1 ⋅ 2𝜋.
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Why the numerical issue?
Numerically, we are in the following situation:

Lemma

Let A a 𝑛 × 𝑛 matrix, with an eigenvalue 𝜆 of multiplicity 𝑚 ≤ 𝑛. Let
𝑢1, … , 𝑢𝑚, 𝑚 independant eigenvectors of A associated to the eigen-
value 𝜆. Then any linear combination of 𝑢1, … , 𝑢𝑚 is also an eigenvector
of A associated to 𝜆.

Proof.
Let 𝑐1, … , 𝑐𝑚 ∈ ℂ,

A (
𝑚

∑
𝑖=1

𝑐𝑖𝑢𝑖) =
𝑚

∑
𝑖=1

𝑐𝑖A𝑢𝑖 =
𝑚

∑
𝑖=1

𝑐𝑖𝜆𝑢𝑖 = 𝜆 (
𝑚

∑
𝑖=1

𝑐𝑖𝑢𝑖) .
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Why consider a generalized problem?

Motivation: again, Fourier optics.
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𝑥(1)
min 𝑥(1)

max

𝑥(2)
min

𝑥(2)
max

Δ𝑥(1)

Δ𝑥(2)

𝑅𝑥

2𝜋𝜉(1)
min 2𝜋𝜉(1)

max

2𝜋𝜉(2)
min

2𝜋𝜉(2)
max

Δ𝜉(1)

Δ𝜉(2)

𝑅𝜉

Figure: duck: Hugo E.©
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Generalized masks

Introduce the space and Fourier filters/masks: 𝑚𝑆, 𝑚𝐹 ∈ 𝕃2(ℝ𝑑; ℂ).

Similarly to the introductory example, consider the space- and
Fourier-limiting operators:

(ℳ𝑆𝑔)(𝑥) ∶= 𝑚𝑆(𝑥)𝑔(𝑥), (ℳ𝐹𝑔)(𝑥) ∶= ℱ−1 [𝑚𝐹ℱ[𝑔]] (𝑥).

Introductory example

(𝒟𝑓)(𝑥) ∶= 𝑓(𝑥)1[−𝑇 ,𝑇 ](𝑥), (ℬ𝑓)(𝑥) ∶= 1
2𝜋

∫
Ω

−Ω

̂𝑓(𝜉)𝑒𝑖𝜉⋅𝑥𝑑𝜉,

so
𝑚𝑆(𝑥) = 1[−𝑇 ,𝑇 ], 𝑚𝐹(𝜉) = 1[−Ω,Ω](𝜉).
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Goal
Consider the maximization problem:

arg max
𝑓∈𝕃2(ℝ𝑑;ℂ)

‖ℳ𝐹ℳ𝑆𝑓‖2
𝕃2(ℝ𝑑;ℂ)

‖𝑓‖2
𝕃2(ℝ𝑑;ℂ)

, (1)

its solution is again given by the eigenfunctions of some integral operator...

Generalized concentration kernel
For 𝑓 ∈ 𝕃2(ℝ𝑑; ℂ), define

(𝒦𝑓)(𝑥) ∶= ∫
ℝ𝑑

𝐾(𝑥, 𝑦)𝑓(𝑦)𝑑𝑦, 𝑥 ∈ ℝ𝑑,

where

𝐾(𝑥, 𝑦) = 𝑚𝑆(𝑥)𝑚𝑆(𝑦)ℱ−1 [|𝑚𝐹|2] (𝑦 − 𝑥), 𝑥, 𝑦 ∈ ℝ𝑑.
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Proposition

The concentration operator 𝒦 is a Hilbert-Schmidt operator and:
1 The kernel 𝐾 is Hermitian, and the operator 𝒦 is self-adjoint,

compact, and positive semi-definite.
2 The countable family {𝜓𝑖}

∞
𝑖=1 of eigenfunctions of 𝒦 is

orthonormal for the usual 𝕃2(ℝ𝑑; ℂ) inner product, the associated
eigenvalues {𝜆𝑖}

∞
𝑖=1 are real, nonnegative, and we can order them

so that 1 > 𝜆𝑖 ≥ 𝜆𝑖+1 ≥ 0, 𝑖 ≥ 1.
3 The orthonormal basis of eigenfunctions {𝜓𝑖}

∞
𝑖=1 solve the

maximization problem (1), and the maximal values attained are
the eigenvalues {𝜆𝑖}

∞
𝑖=1.

4 For large 𝑛, 𝜆𝑛 = 𝑜(𝑛−1/2).
5 Suppose |𝑚𝐹|2 is even, and 𝑚𝑆 is real, then 𝒦 is real-valued for

real inputs.

Qqes propriétés de l’opérateur intégral 𝒦 et de ses vecteurs propres
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Some experiments…

The generalized problem accepts any 𝕃2 function for 𝑚𝑆 and 𝑚𝐹, we now
focus on 2d examples with

𝑚𝑆 = 1𝐷1
, and 𝑚𝐹 = 1𝐵(0,0.3×2𝜋),

with 𝐷1 ⊂ ℝ2.

The generalized concentration operator is discretized using 𝑁1 × 𝑁2 points
→ matrix K.

21 / 32



A fool’s attempt (again)

−1.0 −0.5 0.0 0.5 1.0
x1

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

x
2

Figure: 𝑚𝑆 = 1𝐵(0,0.8).
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A fool’s attempt (again)

2 4 6 8 10 12 14 16

8.0

8.5

9.0

9.5

10.0
×10−5+9.999 × 10−1 Re(𝜆𝑛)

Figure: Eigenvalues with a direct decomposition, in the case 𝐷1 = Disc(0, 0.8).
They are the exact eigenvalues up to some tolerance 𝜂 = 10−5.
𝑁1 = 50, 𝑁2 = 50.
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A fool’s attempt (again)

−1

0

1

𝑥 2
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1
𝑥 2
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−1 0 1
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𝑥1

𝜆15 = 9.99980𝐸 − 01
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𝜆16 = 9.99979𝐸 − 01

−0.10 −0.05 0.00 0.05 0.10

Figure: Eigenvectors obtained with a direct decomposition, in the case
𝐷1 = Disc(0, 0.8). 𝑁1 = 50, 𝑁2 = 50.
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A fool’s attempt (again)
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Figure: Fourier transform of eigenvectors obtained with a direct decomposition, in
the case 𝐷1 = Disc(0, 0.8). 𝑁1 = 50, 𝑁2 = 50.
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Back to 1D

The crucial point is that the eigenvalues depends on 𝑐 = Ω𝑇:

𝑇 → 0 ⟹ 𝑐 → 0 ⟹ 𝜆𝑗 → 0, ∀𝑗.

Consider a scaling
1[−𝜇(𝜀),𝜇(𝜀)] →

𝜀→0
1[−1,1]

→
𝜀→∞

1{0}.

Q.: What happens to eigenvalues 𝜆𝑛 when 𝜀 varies?
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Back to 1D

The only requirement is that

𝜇(𝜀) ⟶
𝜀→0

1, and 𝜇(𝜀) ⟶
𝜀→+∞

0,

so consider for example

𝜇(𝜀) = 1
(1 + 𝜀4)1/4 .

Modified space mask: 𝑚[𝜀]
𝑆 ∶= 1[−𝜇(𝜀),𝜇(𝜀)] → 𝒦[𝜀] → K[𝜀].
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Behavior of eigenvalues
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𝜀 = 0.0𝐸 + 00

−1.0 −0.5 0.0 0.5 1.0
𝑥

0.00

0.25

0.50

0.75

1.00

𝑚
[𝜀

]
𝑆

(𝑥
)

𝜀 = 0.0𝐸 + 00

25 / 32



Behavior of eigenvalues

0 5 10 15 20 25 30
𝑛

0.25

0.50

0.75

1.00

𝜆 𝑛

𝜀 = 1.0𝐸 + 00

−1.0 −0.5 0.0 0.5 1.0
𝑥

0.00

0.25

0.50

0.75

1.00

𝑚
[𝜀

]
𝑆

(𝑥
)

𝜀 = 1.0𝐸 + 00

25 / 32



Behavior of eigenvalues

0 5 10 15 20 25 30
𝑛

0.00

0.25

0.50

0.75

1.00

𝜆 𝑛

𝜀 = 1.8𝐸 + 00

−1.0 −0.5 0.0 0.5 1.0
𝑥

0.00

0.25

0.50

0.75

1.00

𝑚
[𝜀

]
𝑆

(𝑥
)

𝜀 = 1.8𝐸 + 00

25 / 32



Behavior of eigenvalues

0 5 10 15 20 25 30
𝑛

0.00

0.25

0.50

0.75

1.00

𝜆 𝑛

𝜀 = 3.2𝐸 + 00

−1.0 −0.5 0.0 0.5 1.0
𝑥

0.00

0.25

0.50

0.75

1.00

𝑚
[𝜀

]
𝑆

(𝑥
)

𝜀 = 3.2𝐸 + 00

25 / 32



Behavior of eigenvalues

0 5 10 15 20 25 30
𝑛

0.00

0.25

0.50

0.75

1.00

𝜆 𝑛

𝜀 = 5.6𝐸 + 00

−1.0 −0.5 0.0 0.5 1.0
𝑥

0.00

0.25

0.50

0.75

1.00

𝑚
[𝜀

]
𝑆

(𝑥
)

𝜀 = 5.6𝐸 + 00

25 / 32



Behavior of eigenvalues

0 5 10 15 20 25 30
𝑛

0.00

0.25

0.50

0.75

1.00

𝜆 𝑛

𝜀 = 1.0𝐸 + 01

−1.0 −0.5 0.0 0.5 1.0
𝑥

0.00

0.25

0.50

0.75

1.00

𝑚
[𝜀

]
𝑆

(𝑥
)

𝜀 = 1.0𝐸 + 01

25 / 32



What’s the point?
When 𝑐 → 0, the eigenvalues move away from each other.

↓
One can get the associated eigenvectors without confusion.

Algorithm idea:
1 start with 𝜀 ≫ 1 ⟹ 𝜆[𝜀]

𝑗 ≫ 𝜆[𝜀]
𝑗+1 ⟹ 𝑣[𝜀]

𝑗 ⃗e.v. of K[𝜀] OK;

2 compute 𝜈 ∶= 𝑣[𝜀]
𝑗 K[0]𝑣[𝜀]

𝑗 (concentration ratio of 𝑣[𝜀]
𝑗 );

3 if 𝜈 close enough to 𝜆[0]
𝑗 , save 𝑣[𝜀]

𝑗 approx. of 𝑣[0]
𝑗 ;

4 take 𝜀 smaller and repeat.

Not truly eigenvectors of the initial problem, but…
• The eigenvectors of the modified problem are “close enough” to

eigenvectors of the initial concentration problem;
• They are still an orthonormal basis of ℝ𝑁1…𝑁𝑑 .
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Figure: First 12 eigenpairs with the varying spacemask procedure (solid blue
curve), in 1D, with 𝑁 = 100, Ω = 0.1 ⋅ 2𝜋. The exact eigenvectors are given by
orange dash curves.
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To be compared with a direct eigendecomposition…
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Figure: First 12 eigenpairs with an eigendecomposition (solid blue curve), in 1D,
with 𝑁 = 100, Ω = 0.1 ⋅ 2𝜋. The exact eigenvectors are given by orange dash
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A 2D example
Same idea works in dimension 𝑑 ≥ 1.
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(a) Cat-head shape.
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(b) Set-valued function 𝐷1(𝜀), with
𝐷1 = 𝐷1(0) = Cat-head.

Figure: A (poorly drawn) cat-head shape, as well as the set-valued function
𝐷1(𝜀), decreasing for the inclusion relation, and such that 𝐷1(0) = Cat-head.
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Cat-head
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Cat-head in Fourier
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Conclusion & Perspectives
Conclusions:

• We can recover almost-maximizers of the concentration ratio, down
to some given numerical tolerance;

• We can bypass the issue of eigenvalues being too close to each other;
• The approximate eigenvectors are still a basis of 𝕃2(ℝ), and do not

depend on the eigenvector algorithm used → numerically more robust.
Approximate eigenvectors obtained with the varying space mask procedure
are a good alternative to the true eigenvectors!

Perspectives:
• Better understand why the varying space mask procedure yields

vectors more localized than those we are looking for;
• Try the dynamical low-rank approach with a smoothing of the

spacemask, to avoid “singularities” when eigenvalues get too close to
each other;

• Try extrapolation techniques to really go down to 𝜀 ≈ 0.
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The end.
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