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Euler? “Oyler”, “Yuler”, “Euleur”? That guy.

Framework

2D Euler equations, with gravity: z € Q c R?, t € RT,
Op + div (pU) = 0,
0:(pU) +div (pU @ U + PIy) = —pg,
Oi(pE) + div (pEU 4+ PU) = —pg - U,
|-
P=(y—1pe, e=E-Z[U],

U = (u1,u2) € R?, g= (91,92) € R2.
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Hi y’all.

Conservative form of (1)

Letting
p
U:=|pU| eR?,
pE
we have
AU + div F(U) = S,
where
puq pus 0
2
pui + P pUIU2 —pg1
FU) = . SU) =
“ purtiz pus + P “) —pg2
(pE+ P)u1  (pE + P)us —-g- (pU)
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Finite Volume flux schemes: homogeneous case
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Finite Volume flux schemes: homogeneous case “Technical assumptions” = too complicated to explain

Finite Volume Method: homogeneous case

We consider the following conservative system to be solved on £ C R2:
U + div F(U) =0, (3)

where U(t,z) € R* is the conservative unknown and F € R*? is the physical
flux function.

We consider the following hypotheses:

0
o V¢ € R? with |¢] = 1, the Jacobian matrix J(U,§) = % <€ s
diagonalizable.
e The n eigenvalues \; =1, ...,n of J are real.

e Some additional technical assumptions.
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Finite Volume flux schemes: homogeneous case Simpler than that is not easy.
Finite Volume Method

Finite volume method comes from integrating (3) on each cell Q;:
/ ol + div F(U) =
Q;

By applying the Green-Riemann formula, we get:
1

Iijl 29,

where N; is outward unit normal vector to £2;, and the discrete unknown are

U;(t) = \Q ‘ Jo, U(t, z)dz. On each edge,

atUj(t)+ .7:(Z/[)JVJCLS:07

/ F(U) - Njids = |ej;|G(U;,Us;) - Njs, e = |2 N Q. (4)
89,5100

Numerical flux G can be specified by any of the well-known schemes: VFFC,
Roe, Godunov, Rusanov, HLL...
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Finite Volume flux schemes: homogeneous case It’s gonna be even more geometric soon.

Requirements on the numerical flux G

¢ Local conservation:
(GU;,Ux) + GUx,U;)) - Nj = 0,

e Consistency:
gU,u)- Ny = FU) - Nj,
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Finite Volume flux schemes: homogeneous case Stop joking, it’s serious now.

Motivation

The pure edge finite volume schemes doesn’t perform well in some cases, and
may need a severe CFL constraint.

06119
0.6

05

0.4405
0.4381 05 06

Figure 4: Numerical travel time: first order explicit finite volume pure edge scheme depends highly on cell/edge
repartition. Consider a fluid initialy at rest and one cell (center (0.575,0.575)) density field, the numerical
arrival time in the cell at left/bottom corner (center (0.475,0.475)) highly depends on the NUMBER of edges
which separates them.

Figure: Example from [3]
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Finite Volume flux schemes: homogeneous case Edge schemes

Aim (1/2)

Extend the classical eulerian edge finite volume method to eulerian nodal
finite volume method.

p:. Y

A/[r+l
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Finite Volume flux schemes: homogeneous case Node schemes
FV Edge scheme is given by (summing (4) over all edges of ;):
n+l _ 7/n
. u

L+

At > gt =, (5)

r+1/2€9Q;
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Finite Volume flux schemes: homogeneous case Node schemes
FV Edge scheme is given by (summing (4) over all edges of ;):
n+1l Uur

|Qj|]7j+

At >, g, 5)

r+1/2€9Q;

1
Let Cf := §(MT,1MT+1)l

In (5), the sum is performed over degrees of freedom dof € {r+1/2 € Q;}, one
could also perform this sum over dof € {r € Q;}, and obtain a Node scheme:

u”“ uy
Q| L——- + Z gr-ci= (6)

reQ;
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Composite schemes

Finite Volume flux schemes: homogeneous case

Aim (2/2)
Combine Edge Flux scheme (5) with Node Flux scheme (6) to obtain a

Composite Flux scheme.

£
Classical
Edge Flux

{1

Myi12 = 5(My + Myya)

M, 112

Composite Nodal/Edge Flux

Figure: Composite Nodal/Edge fluxes: Edge fluxes involve only adjacent neighbor
cells while nodal fluxes involve any cell sharing one of the end point edge.
(7)

12 /26

Composite = fEdge + (1 — )Node, 6 € [0, 1].
August 25th, 2022
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Finite Volume flux schemes: homogeneous case Composite schemes, wow so clear and concise!

Composite #-scheme

A composite f-scheme can be written as:

urtt —yn .
Q1=+ (1= 0) SNogrcrve Y grzortt oo (s)
reQ); r+1/2€Q;

The dependence on 6 in (8), allows to easily recover the two well-known types
of schemes:

¢ = 0 nodal scheme.

0 = 1 edge scheme.
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Finite Volume flux schemes: homogeneous case Composite schemes. Cool, super duper nice.

Improvements

Y-Axis
Y-Axis

0
X-Axis

Figure 2: Numerical solution of hyperbolic P1 model on cartesian mesh with Dirac like Cauchy data see [11, 8].
Left: with a pure nodal polygonal scheme. Right: with a (composite) conical degenerate scheme. The pure
nodal scheme exhibits some cross stencil unphysical phenomenom (here cured by the composite scheme, see
Figure 5 and section below), both are first order in time and space.

Figure: Example from [3]
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Source Term discretization (6 = 1)

Overview
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o Naive discretization
e Enhanced consistency
@ Numerical Results
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Source Term discretization (6 = 1) Naive discretization

Naive discretization
When the system of conservation laws is completed with a source term.
1
Qj =157 [ Sdr~S(x;),
€451 Jo,

approximate solution does not stay on exact stationary solutions, drifts away
from it.

A steady-state for (1) in 1D: ] —°

N, = 50,g = 5,9 = 17Tfinal =0.1

—ul
—u2

p(x) =e 9 +1,

| approx - exact |

Plz)=C—gx+e 9%

where C' is s.t. P > 0.
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Source Term discretization (6 = 1) Enhanced consistency

Enhanced Consistency

Objective: “Capture” the continuous stationary solutions (see [4, 2]).
Idea from [1]: works in 1D, disappointing results in 2D.

Let @ : Q — R*? such that
divd = S.

Criterion for “capturing” the continuous stationary solution:

FU;) = @(x)), Vj.

The Euler equations (2) can be rewritten
OU + div [F(U) — @] = 0.
BUT the numerical flux associated to
U + div F(U) =0

only involves F(U) at the center z; of cells Q;.
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Source Term discretization (6 = 1) Oh shit, it’s gonna get difficult.

Finding ®

D11 Pyo Dy Do 0

oo [ Par Do | Py oo | o |52
div® = div By By | = Oy By + 0y Doy | = S = S5
D4 Puo by D49 Sa

Problem underconstrained, we need more information!
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Source Term discretization (6 = 1) Enhanced consistency, but easier assumptions.

Zero-speed stationary solutions

We look at stationary solutions such that U = (0,0). Then, solving (1)

amounts to solving
div POy _ (5
0 P/ \S3)°

It makes sense to look for

a$¢ = 52

such that .
Oy = S3

L=l

Il
co® o
o9 oo

We consider S is polynomial of degree n and look for ¢ polynomial of degree
n—+ 1.
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Source Term discretization (6 = 1) A simple polynomial by a simple man with 5 (brain) cells.

Polynomial interpolation on Cartesian grid

n
_ 1 2.2, 3.3
¢j(z,y) = ajr + aja” + ajx
4 5,2 . 6,3 w c e
+ oy + oyt + oy
s
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Source Term discretization (6 = 1) A simple polynomial by a simple man with 5 (brain) cells.

Polynomial interpolation on Cartesian grid

n
oi(z,y) = a}x + a?:vQ + a?w3
+aly + aly® + by’ w c e
s

Interpolation is done by solving a linear system on each cell j:

1 2z; 222 0 0 0 aé SY(zj,y;)
1 2. 222 0 0 0 aj Sy, yr)
1 27 222 0 0 O ol | | St
0 0 0 1 2y 3y? ag | S%(zy,v5)
0 0 0 1 2y 3y ||a; S?(xp, yp)
0 0 0 1 2y 3y7) \ab S?(xs,yr)
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Numerical Results

We consider a stationary solution of (1) given by

pt,x) =1

U(t,z) = (8)

P(t,r) = —gi121

with

and where C's.t. P> 0. g1 =0.1,0 = 1,740 = 0.1.

S(t,z) =

Pressure of order 1 — Tikz

0

—pPYg1
0

—pgiul

—%—rho —x—r1ho
rho ul
= ——rho u2 10-15 4 —1ho u2
5 10=4 —<—rtho E 5 “—t1hoE
) =
3} B ) /
E p 10-16
= =
> =
SRURE St
10-18 4
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Nx (= Ny)

T
20 25 30 35 40
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Figure: Left: naive discretization, right: polynomial reconstruction of ®
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Numerical Results Pressure of order 2 — Tikz <

We consider a stationary solution of (1) given by

p(t,z) =2x; +1 0

U(t,z) = (8) with S(t,z) = 7’891

P(t,z) = —g12] — g1a1 + C —pPgit
and where C s.t. P> 0. g1 =0.1,0 = 1,744 = 0.1.

10—14 .

—rho —»—rho ~
] rho ul tho ul /
—x—rho u2

ho E 1015 ——rho u2 2%
—%—1ho
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3 1074 8 x/ .
g g 10—]6,
= 8
= =
e &
10-17 -
10718 4 e
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Figure: Left: naive discretization, right: polynomial reconstruction of ®
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Numerical Results

Pressure of order 3 — Tikz <3

We consider a stationary solution of (1) given by

p(t,z) =323 +1

Ut ) = (8)

P(t,z) = —q175 — g121 + C

with S(t,x) =

and where C's.t. P> 0. g1 =0.1,0 = 1,740 = 0.1.

Relative error
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Nx (= Ny)

Figure: Left: naive discretization, right: polynomial reconstruction of ®
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‘What’s next? Hopefully easy stuff, i’m tired.

Perspectives

- Use node neighbors for interpolation
- Choose the degree of polynomial according to the number of neighbor cells

- Combine Enhanced Consistency with composite schemes and/or
unstructured meshes

- If possible, adapt the method to non-zero speeds
- Consider other types of source terms (not only gravity!)

- Enhanced Consistency for viscosity schemes?
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Boujoudar, Le Hénaff

Thank you, now wake up!

(CEMRACS '22) Composite FV, Enhanced Consistency

Ple

se clap.

No questions. Ask smart people.
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