Composite Finite Volume schemes and Source Term discretization.

C. Lasuen

P. Paragot

CEA, DAM, DIF, France

Laboratoire J.A. Dieudonné, Université Côte d'Azur, France

M. Boujoudar

Mohammed VI Polytechnic University, Morocco <u>Y. Le Hénaff</u>

Univ Rennes, Centre INRIA de l'Université de Rennes (MINGuS), France

P. Hoch

CEA, DAM, DIF, France

E. Franck

INRIA Nancy, France

August 25th, 2022

Overview

I Finite Volume flux schemes: homogeneous case

- Edge schemes
- Node schemes
- Composite schemes

2 Source Term discretization $(\theta = 1)$

- Naive discretization
- Enhanced consistency
- Numerical Results

(1)

Framework

2D Euler equations, with gravity: $x \in \Omega \subset \mathbb{R}^2, t \in \mathbb{R}^+$,

 $\begin{cases} \partial_t \rho + \operatorname{div} \left(\rho \mathbf{U} \right) = 0, \\ \partial_t (\rho \mathbf{U}) + \operatorname{div} \left(\rho \mathbf{U} \otimes \mathbf{U} + PI_2 \right) = -\rho \mathbf{g}, \\ \partial_t (\rho E) + \operatorname{div} \left(\rho E \mathbf{U} + P \mathbf{U} \right) = -\rho \mathbf{g} \cdot \mathbf{U}, \end{cases}$

$$P = (\gamma - 1)\rho e, \quad e = E - \frac{1}{2} |\mathbf{U}|^2,$$
$$\mathbf{U} = (u_1, u_2) \in \mathbb{R}^2, \quad \mathbf{g} = (g_1, g_2) \in \mathbb{R}^2.$$

Conservative form of (1)

Letting

$$\mathcal{U} := \begin{pmatrix} \rho \\ \rho \mathbf{U} \\ \rho E \end{pmatrix} \in \mathbb{R}^4,$$

we have

 $\partial_t \mathcal{U} + \operatorname{div} \mathcal{F}(\mathcal{U}) = \mathbf{S},\tag{2}$

where

$$\mathcal{F}(\mathcal{U}) := \begin{pmatrix} \rho u_1 & \rho u_2 \\ \rho u_1^2 + P & \rho u_1 u_2 \\ \rho u_1 u_2 & \rho u_2^2 + P \\ (\rho E + P) u_1 & (\rho E + P) u_2 \end{pmatrix}, \quad \mathbf{S}(\mathcal{U}) = \begin{pmatrix} 0 \\ -\rho g_1 \\ -\rho g_2 \\ -\mathbf{g} \cdot (\rho \mathbf{U}) \end{pmatrix}$$

٠

Overview

1 Finite Volume flux schemes: homogeneous case

- Edge schemes
- Node schemes
- Composite schemes

2 Source Term discretization $(\theta = 1)$

- Naive discretization
- Enhanced consistency
- Numerical Results

Finite Volume Method: homogeneous case

We consider the following conservative system to be solved on $\Omega \subset \mathbb{R}^2$:

$$\partial_t \mathcal{U} + \operatorname{div} \mathcal{F}(\mathcal{U}) = 0, \tag{3}$$

where $\mathcal{U}(t,x) \in \mathbb{R}^4$ is the conservative unknown and $\mathcal{F} \in \mathbb{R}^{4,2}$ is the physical flux function.

We consider the following hypotheses:

- $\forall \xi \in \mathbb{R}^2$, with $|\xi| = 1$, the Jacobian matrix $J(\mathcal{U}, \xi) = \frac{\partial \mathcal{F}}{\partial \mathcal{U}} \cdot \xi$ is diagonalizable.
- The *n* eigenvalues $\lambda_i = 1, ..., n$ of *J* are real.
- Some additional technical assumptions.

Finite Volume Method

Finite volume method comes from integrating (3) on each cell Ω_j :

 $\int_{\Omega_j} \partial_t \mathcal{U} + \operatorname{div} \mathcal{F}(\mathcal{U}) = 0,$

By applying the Green-Riemann formula, we get:

$$\partial_t \mathcal{U}_j(t) + \frac{1}{|\Omega_j|} \int_{\partial \Omega_j} \mathcal{F}(\mathcal{U}) \cdot N_j ds = 0,$$

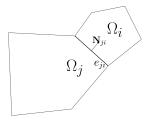
where N_j is outward unit normal vector to Ω_j , and the discrete unknown are $\mathcal{U}_j(t) = \frac{1}{|\Omega_j|} \int_{\Omega_j} \mathcal{U}(t, x) dx$. On each edge,

$$\int_{\partial\Omega_j\cap\partial\Omega_i} \mathcal{F}(\mathcal{U}) \cdot N_{ji} ds \approx |e_{ji}| \mathcal{G}(\mathcal{U}_j, \mathcal{U}_i) \cdot N_{ji}, \ e_{ji} = |\Omega_i \cap \Omega_j|.$$
(4)

Numerical flux \mathcal{G} can be specified by any of the well-known schemes: **VFFC**, **Roe, Godunov, Rusanov, HLL**...

Boujoudar, Le Hénaff (CEMRACS '22) Composite FV, Enhanced Consistency August 25th, 2022 7/26

Requirements on the numerical flux \mathcal{G}



• Local conservation:

$$(\mathcal{G}(\mathcal{U}_j, \mathcal{U}_k) + \mathcal{G}(\mathcal{U}_k, \mathcal{U}_j)) \cdot N_j = 0,$$

• Consistency:

$$\mathcal{G}(\mathcal{U},\mathcal{U})\cdot N_j = \mathcal{F}(\mathcal{U})\cdot N_j,$$

Motivation

The pure edge finite volume schemes doesn't perform well in some cases, and may need a severe CFL constraint.

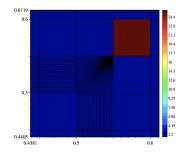
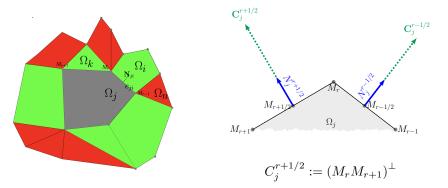


Figure 4: Numerical travel time: first order explicit finite volume pure edge scheme depends highly on cell/edge repartition. Consider a fluid initially at rest and one cell (center (0.575, 0.575)) density field, the numerical arrival time in the cell at left/bottom corner (center (0.475, 0.475)) highly depends on the NUMBER of edges which separates them.

Figure: Example from [3]

Aim (1/2)

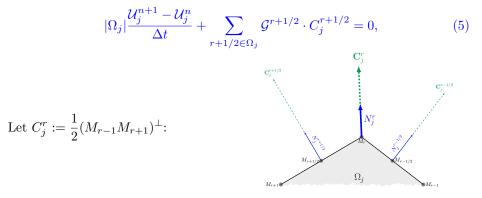
Extend the classical eulerian edge finite volume method to eulerian nodal finite volume method.



FV Edge scheme is given by (summing (4) over all edges of Ω_j):

$$|\Omega_j| \frac{\mathcal{U}_j^{n+1} - \mathcal{U}_j^n}{\Delta t} + \sum_{r+1/2 \in \Omega_j} \mathcal{G}^{r+1/2} \cdot C_j^{r+1/2} = 0,$$
(5)

FV Edge scheme is given by (summing (4) over all edges of Ω_j):



In (5), the sum is performed over degrees of freedom $dof \in \{r + 1/2 \in \Omega_j\}$, one could also perform this sum over $dof \in \{r \in \Omega_j\}$, and obtain a *Node scheme*:

$$\Omega_j | \frac{\mathcal{U}_j^{n+1} - \mathcal{U}_j^n}{\Delta t} + \sum_{r \in \Omega_j} \mathcal{G}^r \cdot C_j^r = 0.$$
(6)

Aim (2/2)

Combine Edge Flux scheme (5) with Node Flux scheme (6) to obtain a Composite Flux scheme.

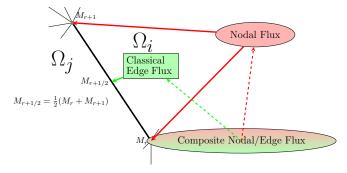


Figure: Composite Nodal/Edge fluxes: Edge fluxes involve only adjacent neighbor cells while nodal fluxes involve any cell sharing one of the end point edge.

Composite =
$$\theta$$
Edge + $(1 - \theta)$ Node, $\theta \in [0, 1]$. (7)

Boujoudar, Le Hénaff (CEMRACS '22) Composite FV, Enhanced Consistency August 25th, 2022 12/26

Composite θ -scheme

A composite θ -scheme can be written as:

$$|\Omega_j| \frac{\mathcal{U}_j^{n+1} - \mathcal{U}_j^n}{\Delta t} + (1-\theta) \sum_{r \in \Omega_j} \mathcal{G}^r \cdot C_j^r + \theta \sum_{r+1/2 \in \Omega_j} \mathcal{G}^{r+1/2} \cdot C_j^{r+1/2} = 0.$$
(8)

The dependence on θ in (8), allows to easily recover the two well-known types of schemes:

- $\theta = 0$ nodal scheme.
- $\theta = 1$ edge scheme.

Boujoudar, Le Hénaff (CEMRACS '22) Composite FV, Enhanced Consistency 13/26August 25th, 2022

Improvements

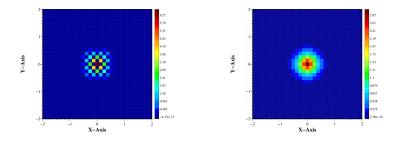


Figure 2: Numerical solution of hyperbolic P1 model on cartesian mesh with Dirac like Cauchy data see [11, 8]. Left: with a pure nodal polygonal scheme. Right: with a (composite) conical degenerate scheme. The pure nodal scheme exhibits some cross stencil unphysical phenomenom (here cured by the composite scheme, see Figure 5 and section below), both are first order in time and space.

Figure: Example from [3]

Overview

1 Finite Volume flux schemes: homogeneous case

- Edge schemes
- Node schemes
- Composite schemes

2 Source Term discretization $(\theta = 1)$

- Naive discretization
- Enhanced consistency
- Numerical Results

Naive discretization

When the system of conservation laws is completed with a source term.

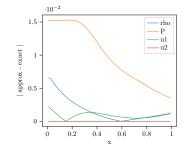
$$\mathcal{Q}_j = \frac{1}{|\Omega_j|} \int_{\Omega_j} S(x) dx \approx S(x_j),$$

approximate solution does not stay on exact stationary solutions, drifts away from it.

A steady-state for (1) in 1D:

$$\begin{cases} \rho(x) = e^{-gx} + 1, \\ \mathbf{U}(x) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \\ P(x) = C - gx + e^{-gx}, \end{cases}$$

where C is s.t. P > 0.



 $N_x = 50, g = 5, \theta = 1, T_{final} = 0.1$

Enhanced Consistency

Objective: "Capture" the continuous stationary solutions (see [4, 2]). Idea from [1]: works in 1D, disappointing results in 2D.

Let $\Phi: \Omega \mapsto \mathbb{R}^{4,2}$ such that

$$\operatorname{div} \Phi = S.$$

Criterion for "capturing" the continuous stationary solution:

 $\mathcal{F}(\mathcal{U}_j) = \Phi(x_j), \, \forall j.$

The Euler equations (2) can be rewritten

 $\partial_t \mathcal{U} + \operatorname{div} \left[\mathcal{F}(\mathcal{U}) - \Phi \right] = 0.$

BUT the numerical flux associated to

 $\partial_t \mathcal{U} + \operatorname{div} \tilde{\mathcal{F}}(\mathcal{U}) = 0$

only involves $\tilde{\mathcal{F}}(\mathcal{U})$ at the center x_j of cells Ω_j .

Boujoudar, Le Hénaff (CEMRACS '22) Composite FV, Enhanced Consistency

Finding Φ

$$\operatorname{div} \Phi = \operatorname{div} \begin{pmatrix} \Phi_{11} & \Phi_{12} \\ \Phi_{21} & \Phi_{22} \\ \Phi_{31} & \Phi_{32} \\ \Phi_{41} & \Phi_{42} \end{pmatrix} = \partial_x \begin{pmatrix} \Phi_{11} \\ \Phi_{21} \\ \Phi_{31} \\ \Phi_{41} \end{pmatrix} + \partial_y \begin{pmatrix} \Phi_{12} \\ \Phi_{22} \\ \Phi_{32} \\ \Phi_{42} \end{pmatrix} = \mathbf{S} = \begin{pmatrix} 0 \\ S_2 \\ S_3 \\ S_4 \end{pmatrix}.$$

Problem underconstrained, we need more information!

Zero-speed stationary solutions

We look at stationary solutions such that $\mathbf{U} = (0, 0)$. Then, solving (1) amounts to solving

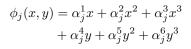
$$\operatorname{div} \begin{pmatrix} P & 0 \\ 0 & P \end{pmatrix} = \begin{pmatrix} S_2 \\ S_3 \end{pmatrix}.$$

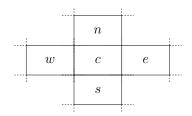
It makes sense to look for

$$\Phi = \begin{pmatrix} 0 & 0\\ \phi & 0\\ 0 & \phi\\ 0 & 0 \end{pmatrix} \quad \text{such that} \quad \begin{cases} \partial_x \phi = S_2\\ \partial_y \phi = S_3 \end{cases}.$$

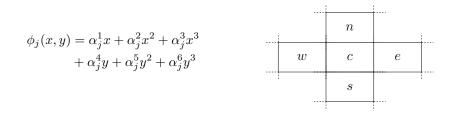
We consider **S** is polynomial of degree n and look for ϕ polynomial of degree n + 1.

Polynomial interpolation on Cartesian grid





Polynomial interpolation on Cartesian grid



Interpolation is done by solving a linear system on each cell j:

$$\begin{pmatrix} 1 & 2x_j & 2x_j^2 & 0 & 0 & 0 \\ 1 & 2x_r & 2x_r^2 & 0 & 0 & 0 \\ 1 & 2x_l & 2x_l^2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 2y_j & 3y_j^2 \\ 0 & 0 & 0 & 1 & 2y_b & 3y_b^2 \\ 0 & 0 & 0 & 1 & 2y_t & 3y_t^2 \end{pmatrix} \begin{pmatrix} \alpha_j^1 \\ \alpha_j^2 \\ \alpha_j^3 \\ \alpha_j^4 \\ \alpha_j^5 \\ \alpha_i^6 \end{pmatrix} = \begin{pmatrix} S^1(x_j, y_j) \\ S^1(x_r, y_r) \\ S^1(x_l, y_l) \\ S^2(x_j, y_j) \\ S^2(x_j, y_b) \\ S^2(x_t, y_t) \end{pmatrix}$$

We consider a stationary solution of (1) given by

$$\begin{cases} \rho(t,x) = 1\\ \mathbf{U}(t,x) = \begin{pmatrix} 0\\ 0 \end{pmatrix} & \text{with} & \mathbf{S}(t,x) = \begin{pmatrix} 0\\ -\rho g_1\\ 0\\ -\rho g_1 u_1 \end{pmatrix}\\ P(t,x) = -g_1 x_1 & \mathbf{S}(t,x) = \begin{pmatrix} 0\\ 0\\ -\rho g_1 u_1 \end{pmatrix} \end{cases}$$

and where C s.t. P > 0. $g_1 = 0.1, \theta = 1, T_{final} = 0.1$.

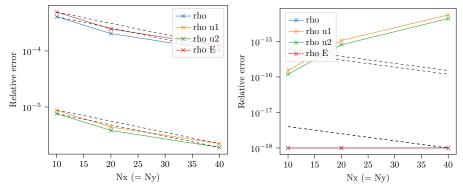


Figure: Left: naive discretization, right: polynomial reconstruction of Φ

We consider a stationary solution of (1) given by

$$\begin{cases} \rho(t,x) = 2x_1 + 1\\ \mathbf{U}(t,x) = \begin{pmatrix} 0\\ 0 \end{pmatrix} & \text{with} & \mathbf{S}(t,x) = \begin{pmatrix} 0\\ -\rho g_1\\ 0\\ -\rho g_1 u_1 \end{pmatrix}\\ P(t,x) = -g_1 x_1^2 - g_1 x_1 + C & \text{with} & \mathbf{S}(t,x) = \begin{pmatrix} 0\\ 0\\ -\rho g_1 u_1 \end{pmatrix} \end{cases}$$

and where C s.t. P > 0. $g_1 = 0.1, \theta = 1, T_{final} = 0.1$.

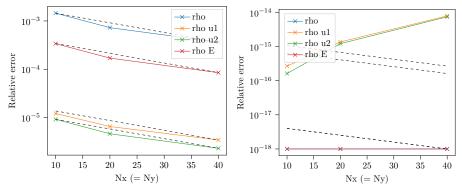


Figure: Left: naive discretization, right: polynomial reconstruction of Φ

22/26

We consider a stationary solution of (1) given by

$$\begin{cases} \rho(t,x) = 3x_1^2 + 1\\ \mathbf{U}(t,x) = \begin{pmatrix} 0\\ 0 \end{pmatrix} & \text{with} & \mathbf{S}(t,x) = \begin{pmatrix} 0\\ -\rho g_1\\ 0\\ -\rho g_1 u_1 \end{pmatrix}\\ P(t,x) = -g_1 x_1^3 - g_1 x_1 + C & \end{bmatrix}$$

and where C s.t. P > 0. $g_1 = 0.1, \theta = 1, T_{final} = 0.1$.

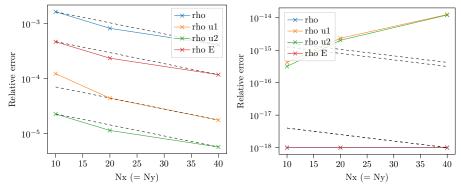


Figure: Left: naive discretization, right: polynomial reconstruction of Φ

Perspectives

- Use node neighbors for interpolation
- Choose the degree of polynomial according to the number of neighbor cells
- Combine Enhanced Consistency with composite schemes and/or unstructured meshes
- If possible, adapt the method to non-zero speeds
- Consider other types of source terms (not only gravity!)
- Enhanced Consistency for viscosity schemes?

Francois Alouges, Jean-Michel Ghidaglia, and Marc Tajchman. On the interaction of upwinding and forcing for nonlinear hyperbolic systems of conservation laws.

François Bouchut.

Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws and Well-Balanced Schemes for Sources. Frontiers in Mathematics. Birkäuser, Basel ; Boston, 2004.

Philippe Hoch.

Nodal extension of approximate riemann solvers and nonlinear high order reconstruction for finite volume method on unstructured polygonal and conical meshes: the homogeneous case. 2022.

Randall J LeVeque et al.

Finite volume methods for hyperbolic problems, volume 31. Cambridge university press, 2002.

