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Schrödinger equation

Linear Schrödinger equation, a.k.a. Quantum Harmonic Oscillator:

i∂tψ(t, x) + ∆xψ(t, x) − |x |2ψ(t, x) = 0, (QHO)

where x = (x1, . . . , xd) ∈ Rd , ∆x =
∑d

i=1
∂2

∂x2
i
, ∂t = ∂

∂t , d ≥ 1.

Initial condition:

ψ(t = 0, ·) = ψ0 smooth enough.
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Numerical simulations

Main numerical algorithms

:
• finite differences: most simple ones, also the most expensive. Not

feasible in high dimension.
• grid-based spectral methods: more accurate, but still rely on a grid.
• gridless spectral methods: accurate and efficient depending on the

initial condition.
• variational methods: made for initial conditions that write as sum of

complex Gaussian functions.
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• grid-based spectral methods: more accurate, but still rely on a grid.
• gridless spectral methods12: accurate and efficient depending on

the initial condition.

• variational methods: made for initial conditions that write as sum of
complex Gaussian functions.

1Weizhu Bao, Hailiang Li, and Jie Shen. “A Generalized-Laguerre–Fourier–Hermite
Pseudospectral Method for Computing the Dynamics of Rotating Bose–Einstein
Condensates”. In: SIAM Journal on Scientific Computing 31.5 (Jan. 2009).

2Mechthild Thalhammer, Marco Caliari, and Christof Neuhauser. “High-Order
Time-Splitting Hermite and Fourier Spectral Methods”. In: Journal of Computational
Physics 228.3 (Feb. 2009).
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Gridless spectral methods
Idea: decompose the initial condition into an appropriate basis, then use
the basis functions’ properties to solve (QHO).

ψ(t, x) =
∑
n≥0

cn(t)Hn(x).

For instance, Hermite basis {Hn}n≥0 is appropriate for (QHO) since

(∆x − |x |2)Hn(x) = −(2n + 1)Hn(x)
=⇒ i∂tcn(t) = (2n + 1)cn(t).

Advantages: very efficient if the number of modes is small, easy to
implement.

Drawbacks: Requiring an small number of modes in the basis imposes an
implicit restriction at time t = 0. Example...
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Gridless spectral methods

Solve (QHO) in dimension d = 1, where

ψ0(x) = e− |x−µ|2
2 + e− |x+µ|2

2 , µ ∈ R.

x

2µ

0

Appropriate basis: Hermite basis {Hn}n≥0.
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Gridless spectral methods

Solve (QHO) in dimension d = 1, where

ψ0(x) = e− |x−µ|2
2 + e− |x+µ|2

2 , µ ∈ R. x0

Appropriate basis: Hermite basis {Hn}n≥0.

0 10 20 30
0.0

0.5

1.0

1.5

2.0

2.5

n

⟨ψ
0,

H n
⟩

µ = 10.0

Yoann Le Henaff (Rennes University) Modulation for Schrödinger eqn Molecular Dynamics workshop 7 / 35



Gridless spectral methods

Solve (QHO) in dimension d = 1, where

ψ0(x) = e− |x−µ|2
2 + e− |x+µ|2

2 , µ ∈ R. x

2µ

0

Appropriate basis: Hermite basis {Hn}n≥0.

0 10 20 30
0.0

0.5

1.0

1.5

2.0

2.5

n

⟨ψ
0,

H n
⟩

µ = 0.0
µ = 1.0
µ = 5.0
µ = 10.0

Yoann Le Henaff (Rennes University) Modulation for Schrödinger eqn Molecular Dynamics workshop 7 / 35



Variational methods

Use a variational principle on a sum of Gaussian functions.
Gaussian functions are very much liked because they are easy to deal with
in this context.
Either:

• Dirac-Frenkel variational principle: issues inherent to DFVP arise
(non-invertibility of projection matrix), only ad-hoc procedure can
help obtain satisfying results.

• Rothe method: works better than DFVP, but requires solving
nonlinear optimization problem at each timestep → expensive
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Summary

Initial condition:
• sum of Gaussian functions → variational method
• few modes of a given basis → gridless spectral method

However, a Gaussian function is the first mode for Hermite basis → two
possibilities in the simplest framework.

Proposed alternative: gridless spectral method designed for initial
conditions as a sum of Gaussian functions → modulation.

Remark
More generally, we consider functions that write as a sum of few Hermite
modes.
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Modulation ansatz
Given N ∈ N∗, decompose

ψ(t, x) :=
N∑

j=1
uj(t, x), (1)

with
uj(t, x) := Aj

Lj eiγj +iLj βj ·y j −i Bj
4 |y j |2v j(s j , y j), (“bubble”) (2)

where

y j := x − X j

Lj , and ds j

dt := 1
(Lj)2 . (“bubble frame”)

Modulation
All parameters depend on time!

Warning
No uniqueness of the decomposition (1), dictated by initial condition
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Choice of parameters
By linearity, we plug each bubble uj , into (QHO) (omit j index):

(i∂t + ∆x − |x |2)u(t, x)

= A
L3 eiγ+iLβ·y−i B

4 |y |2

×



i∂s +
(
−γs + β · Xs − L2

(
|β|2 + |X |2

))
+
(As

A − Ls
L − B d

2

)
i +

(
−Ls

L − B
)

iΛ

+ i
(

2Lβ − Xs
L

)
· ∇

+
(

−2L3X + LBβ − Lβs − B
2

Xs
L

)
· y

+ ∆y +
[

Bs
4 −

(
B2

4 + L4
)

− B
2

Ls
L

]
|y |2


v(s, y), (3)

where Λv := y · ∇v .
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Choose parameters so that (QHO) appears again, in variables (s, y) with
unknown v :

(i∂t + ∆x − |x |2)u(t, x)

= A
L3 eiγ+iLβ·y−i B

4 |y |2

×



i∂s +
(
−γs + β · Xs − L2

(
|β|2 + |X |2

))
+
(As

A − Ls
L − B d

2

)
i +

(
−Ls

L − B
)

iΛ

+ i
(

2Lβ − Xs
L

)
· ∇

+
(

−2L3X + LBβ − Lβs − B
2

Xs
L

)
· y

+ ∆y +
[

Bs
4 −

(
B2

4 + L4
)

− B
2

Ls
L

]
|y |2


v(s, y). (4)

= 0, = -1.
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ODEs to solve:

As = AB
2 (d − 2), Ls = −BL

Bs = −4 + 4L4 − B2, Xs = 2L2β

βs = −2L2X , γs = L2
(
|β|2 − |X |2

)
.

(5)

For each j = 1, . . . ,N, v j now satisfies (QHO) in bubble j ’s frame (s j , y j):

(i∂t + ∆x − |x |2)uj(t, x) = 0 ⇐⇒ (i∂s j + ∆y j − |y j |2)v j(s j , y j) = 0

Miracle!
They can be integrated exactly!

Remark
They are the same equations as the Dirac-Frenkel variational principle
when there is no redundancy in DFVP (i.e. no overlapping).
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Explicit expressions of modulation parameters

A(t) = A(0)
(

L(t)
L(0)

) 2−d
2

,

L(t)2 = 2h(t) − cos(ξ(t))
√

4h(t)2 − 1,

B(t) = 2 sin(ξ(t))
√

4h(t)2 − 1,

Xi (t) = sin(θi (t))
√

2ai (t), i = 1, . . . , d ,

βi (t) = cos(θi (t))
√

2ai (t), i = 1, . . . , d ,

γ(t) = γ(0) +
d∑

l=1

al(0)
2 [sin(2θl(t)) − sin(2θl(0))]

s(t) = −1
2 arctan

((
2h(0) +

√
4h(0)2 − 1

)
tan
(

ξ(0)
2 − 2t

))
+ 1

2 arctan
((

2h(0) +
√

4h(0)2 − 1
)

tan
(

ξ(0)
2

))
+ mt

π

2 ,

where, if m0 ∈ Z is such that ξ(0)
2 ∈ m0π +

[
−π

2 ,
π
2
]
, then mt ∈ Z is

defined by ξ(t)
2 ∈ (m0 − mt)π +

[
−π

2 ,
π
2
]
.

ai (t)=
1
2
(

Xi (0)2 + βi (0)2
)

= ai (0),

θi (t)= arctan
(Xi (0)

βi (0)

)
+ 2t,

h(t)=
L(0)4 + 1 + B(0)2

4
4L(0)2 = h(0),

ξ(t)= arctan
( B(0)

4h(0) − 2L(0)2

)
− 4t.

action-angle variables
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Modulation parameters: OK. v?

Function v j required to solve (QHO) in variables (s j , y j).

Hermite basis: {
ϕn(y j) := Hn1(y

j
1) · · · Hnd (y j

d) : n ∈ Nd
}
.

Decompose
v j(0, y j) =

∑
n∈Nd

v j
nϕn(y j), (6)

with v j
n ∈ C, then

v j(s j , y j) =
∑

n∈Nd

v j
ne−(2|n|+d)is j

ϕn(y). (7)
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Does it work well?
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Reference scheme
In order to assess the efficiency of the bubble scheme, we need a reference
scheme. We use a Fourier-spectral grid-based method with an exact
splitting method between ∆ and |x |2 (cf.23):

e−it(−∆+|x |2) = e− i
2 tan(t)|x |2e

i
2 sin(2t)∆x e− i

2 tan(t)|x |2 .

∆ part approximated via a Fourier approach (with numerically truncated
basis).
Two-dimensional examples, with 256 points used in each dimension, and a
computational domain [−15, 15] × [−15, 15].

2Joackim Bernier, Nicolas Crouseilles, and Yingzhe Li. “Exact Splitting Methods for
Kinetic and Schrödinger Equations”. In: Journal of Scientific Computing 86.1 (Jan.
2021).

3Joackim Bernier. “Exact Splitting Methods for Semigroups Generated by
Inhomogeneous Quadratic Differential Operators”. In: Foundations of Computational
Mathematics 21.5 (Oct. 2021).
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Good properties of the bubble scheme

Numerical boundary conditions
The bubble scheme computes a solution on the unbounded domain Rd !

Time evolution
In preparation of the third part of the presentation, results are shown at
each timestep using time-discretization. This is not necessary! We can
simply compute the bubble solution at time T , and doing a
time-discretization just accumulates round-off errors.

Variational, gridless spectral, bubbles. . .
• gridless spectral method: N = 1
• variational method: N large
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Assessing bubble scheme efficiency
Example 1: Video

ψ(t = 0, x) = e−|x−µ|2ei cosh |x−µ| ≈ e−|x−µ|2ei+i |x−µ|2
2 ,

where x ∈ R2 and µ = (1, 1).
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Figure: ∆t = 10−2.
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Example 2: Video

ψ(t = 0, x) =
3∑

i=1
eγ j +iβj ·(x−X j )− |x−Xj |2

2(Lj )2 ,

γ1 = 5 γ2 = −5 γ3 = 0,

X 1 = 7(1, 0) X 2 = 7
(

−
√

3
2

)
X 3 = 7

(
−

√
3

2 ,−1
2

)
,

with Lj = 3 and βj = (X j)⊥, j = 1, 2, 3.
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Example 3: Video

ψ(t = 0, x) = πe− |x−µ1|2

2L2 + 2e− |x−µ2|2

2L2 .

where x ∈ R2, L = 2, µ1 = (0, 5) and µ2 = (8, 0).
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We are now interested in the nonlinear Schrödinger equation:

i∂tu(t, x) + ∆xu(t, x) − |x |2u(t, x) = u(t, x)|u(t, x)|2.

We now can solve (QHO) exactly, so by splitting, we only need to solve

i∂tu(t, x) = u(t, x)|u(t, x)|2.

Restriction
We want to keep the bubble discretization
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Simplifying assumption
We now consider v j(s j , y j) = exp

(
−1

2 |y j |2
)

(i.e. only first Hermite mode).

Bubble decomposition: u(t, ·) ∈ M, with

M :=

w ∈ L2(Rd)

∣∣∣∣∣∣∣∣
w(x) =

N∑
j=1

Aj

Lj eiγj +iβj ·(x−X j )− 2+iBj
4(Lj )2

∣∣x−X j
∣∣2
,

Aj ,Bj , γj ∈ R, Lj ∈ R∗
+, X j , βj ∈ Rd

 . (8)

We want to keep the bubble decomposition at all times, but
u(t, ·)|u(t, ·)|2 /∈ M → we project ∂tu(t) onto M.
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Dirac-Frenkel principle

M

Tu(t)M

×

u(t)

∂tu(t) = −iu(t)|u(t)|2 (exact)

∂tu(t) (approx.)
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Let Bu(t) be a basis of Tu(t)M, then Dirac-Frenkel principle yields

∂tu(t) ∈ Tu(t)M, such that
〈f , i∂tu(t)〉 = 〈f , u(t)|u(t)|2〉, ∀f ∈ Bu(t).

(9)

A family (which may happen to be linearly dependent!) spanning the
tangent space Tu(t)M is given by

Bu(t) =
{

eiΓj (y j )− |y|2
2 , (y j

1)eiΓj (y j )− |yj |2
2 , . . . , (y j

d)eiΓj (y j )− |yj |2
2 ,

|y j |2eiΓj (y j )− |yj |2
2 : j = 1, . . . ,N

}
,

(10)

where we defined

Γj(y j) := γj + Ljβj · y j − Bj

4 |y j |2.
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Application of the Dirac-Frenkel principle results in a linear system:

AE = S.

The vector E contains approximate time derivatives of each parameter.

Computation of A and S
We use analytical formulas for the components of A and S, since their
components are product of Gaussian in different frames. Should also be
doable with Hermite functions, we did not try yet to do the computations.
For more general functions v , need to resort to numerical integration.
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Does it work well?
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Assessing bubble scheme efficiency
Example 1: Video

ψ(t = 0, x) = e−|x−µ|2ei cosh |x−µ| ≈ e−|x−µ|2ei+i |x−µ|2
2 ,

where x ∈ R2 and µ = (1, 1).
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Figure: ∆t = 10−2.
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Example 2: Video

ψ(t = 0, x) =
3∑

i=1
eγ j +iβj ·(x−X j )− |x−Xj |2

2(Lj )2 ,

γ1 = 5 γ2 = −5 γ3 = 0,

X 1 = 7(1, 0) X 2 = 7
(

−
√

3
2

)
X 3 = 7

(
−

√
3

2 ,−1
2

)
,

with Lj = 3 and βj = (X j)⊥, j = 1, 2, 3.
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Figure: ∆t = 10−2.
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Example 3: Video

ψ(t = 0, x) = πe− |x−µ1|2

2L2 + 2e− |x−µ2|2

2L2 .

where x ∈ R2, L = 2, µ1 = (0, 5) and µ2 = (8, 0).
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Figure: ∆t = 10−2.
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Remarks

Modulation works very well in the linear setting Dirac-Frenkel principle
works well when A is well-conditioned.

When it is not the case, the approximation is very bad and yields very
large time derivative of parameters → jumps observed. It is inherent to the
Dirac-Frenkel principle → Loïc’s work?
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Thank you for your attention!
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