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Motivation
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The spectral concentration problem

H. J. Landau, H. O. Pollak, D. Slepian 1960s:

A function cannot be compactly supported in both space and Fourier
domains. What if we look for functions that are compactly supported in
one domain, and among all of them take the one that is the “most
concentrated” in the other domain?

Heisenberg inequality: f ∈ L2(R,C),

∥xf ∥2
L2
∥ξ f̂ ∥2

L2
≥
∥f ∥4

L2

16π2

(equality iff Gaussians).
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The spectral concentration problem

1960s formulation:

max

{∫ T
−T |f |2

∥f ∥2
L2

, supp f̂ ⊂ [−W ,W ].

}

f (x) =
1

2π

∫ W

−W
f̂ (ξ)e iξxdξ

∫ T

−T
|f |2 = 1

4π2

∫ W

−W

∫ W

−W

∫ T

−T
f̂ (ξ)f̂ (η)e ixξ−ixηdζdηdx

=
1

4π2

∫ W

−W

∫ W

−W
f̂ (ξ)f̂ (η)

sin(T (ξ − η))
ξ − η dη
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The spectral concentration problem

Eigenvalue problem:

(Kψ)(ξ) =

∫ W

−W

sin(T (ξ − η))
ξ − η ψ(η)dη = λψ(ξ), ξ ∈ [−W ,W ].

Solution by Slepian et al.:

H = −∂ξ(W − ξ2)∂ξ + T ξ2 =⇒ [H,K ] = 0.

Eigenvalues of H: Prolate Spheroidal wave functions.

Hψj = ωjψj , ωj+1 > ωj =⇒ Kψj = λjψj .

D. Slepian (1983): There was a lot of serendipity here, clearly. And then
our solution too, seemed to hinge on a lucky accident
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The spectral concentration problem

H = ∂ξ(W
2 − ξ2)∂ξ − T 2ξ2 =⇒ [H,K ] = 0.

Fourier transform: exchange W and T .
After scaling:

H = −∂x(1− x2)∂x + c2x2, c = WT .

Result by Landau and Widom 1980. Kψj = λψj ,

N(K , α) = ♯ {j ∈ N, λj ≥ α}
=

c

2π
+ µα log c + o(log c), c → +∞.
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The spectral concentration problem

Obvious extension to rectangles.

Extension to balls by radial symmetry (Slepian 80s).

One result with Gaussian filters
(Brander, De Facio 1986 ← 9 citations!)

Some recent refinements of the Landau-Widom result
(special functions tools)

That’s all folks!

Constantly used in engineering, optics, geophysics, laser
communications, etc...

The ”Slepian basis” seems natural.
Fast slepian transform, etc...

Serious numerical problems in computing the basis in higher
dimensions.

Y. Le Hénaff (Uni Tü) Spectral concentration problem NA seminar 7 / 33



Eigenvectors of the concentration matrix
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Comparison between true eigenvectors (dash orange) and eigenvectors
(solid blue) of the discrete concentration matrix (N = 150 points).
T = 1, W = 0.1 · 2π.
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Eigenvectors of the concentration matrix
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Eigenvalues of the concentration matrix
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Eigenvalues of the discrete concentration matrix (N = 150 point)
T = 1 and W = 0.1 · 2π.
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What can be done apart from the known cases?
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Generalized spectral concentration problem

F [f ](ξ) :=
∫
Rd

f (x)e−iξ·xdx , F−1[f ](x) :=
1

(2π)d

∫
Rd

f (ξ)e ix ·ξdξ.

mS , m̂F ∈ L2(Rd) two masks, operators on L2(Rd):

(MS f )(x) = mS(x)f (x), (MF f )(x) = F−1 [m̂FF f ] (x).

Goal: Find maximizers f ∈ L2(Rd) of the concentration ratio

ν :=
∥MFMS f ∥22
∥f ∥22

.

Examples: mS = 1ΩS
, m̂F = 1ΩF

, or mS and m̂F Gaussian functions.

Y. Le Hénaff (Uni Tü) Spectral concentration problem NA seminar 11 / 33



Generalized spectral concentration problem

ν =
∥MFMS f ∥22
∥f ∥22

=
(Kf , f )L2
∥f ∥22

(Kf )(x) =
∫
Rd

f (y)mS(y)mS(x)F−1
[
|m̂F |2

]
(x − y)dy , x ∈ Rd

= mS(x)

∫
Rd

k(x − y)mS(y)f (y)dy .

Generalized Spectral concentration problem: Find eigenpairs of K
Kψ = λψ.

Case of domains:

(Kf )(x) =
∫
ΩS

k(x − y)f (y)dy , x ∈ ΩS

k(z) =

∫
ΩF

e izξdξ.
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Properties:

∥K∥L2(Rd×Rd ) ≤ ∥mS∥22∥m̂F∥22.

1 The concentration operator K is a Hilbert-Schmidt operator,
self-adjoint, compact, and positive semi-definite.

2 The countable family {ψi}∞i=1 of eigenfunctions of K is orthonormal
and complete in L2(Rd).
Associated eigenvalues {λi}∞i=1 real, nonnegative, λi ≥ λi+1 ≥ 0.

3 min-max theorems.

4 λn = o(n−1/2), n→ +∞.
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Symmetries:

{lemma:slepian -- symmetry in eigenvectors}
S ∈ Rd×d orthogonal matrix. If

mS ◦ S = αmS , |α| = 1

|m̂F ◦ S| = |m̂F | .

Then ∣∣∣∣ Kψ = λψ
λ multiplicity 1

=⇒ ψ ◦ S = βψ, |β| = 1.
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Translations with binary masks

Lemma
{lemma: translations with binary masks}

Let ΩS ,ΩF ⊂ Rd , p ∈ Rd . The following equivalences hold:

(λ, ψ) is an eigenpair of the concentration operator associated to
masks mS = 1ΩS+p and m̂F = 1ΩF

iff (λ, ψ ◦ τ−p) is an eigenpair of
the concentration operator associated to masks mS = 1ΩS

and
m̂F = 1ΩF

;

(λ, ψ) is an eigenpair of the concentration operator associated to
masks mS = 1ΩS

and m̂F = 1ΩF+p iff (λ, x 7→ ψ(x)e−ip·x) is an
eigenpair of the concentration operator associated to masks
mS = 1ΩS

and m̂F = 1ΩF
.
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Affine transformations with binary masks

Lemma
{lemma: affine transformations with binary masks}

Let A ∈ Rd×d an invertible matrix, ΩS ,ΩF ⊂ Rd , and write

AΩF := {Az : z ∈ ΩF} .

Let (λ, ψ) an eigenpair of the concentration operator associated to binary
masks mS = 1ΩS

and m̂F = 1AΩF
. Then, (λ, ψ ◦ A−T ) is an eigenpair of

the concentration operator associated to binary masks mS = 1ATΩS
and

m̂F = 1ΩF
. The converse is also true.
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Exact eigenvectors for quadric binary masks

Let
D(M, v , c) :=

{
x ∈ Rd : xTMx + vT x + c ≤ 0

}
.

Theorem

Let ΩS = D(MS , vs , cS) and ΩF = D(MF , vF , cF ), for some symmetric,
diagonalizable and invertibles matrices MS ,MF ∈ Rd×d , vectors
vS , vF ∈ Rd and scalars cS , cF ∈ R. Let K the concentration operator
associated to masks mS = 1ΩS

and m̂F = 1ΩF
. Then, there exists a

second-order differential operator P commuting with K.
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Exact eigenvectors for quadric binary masks

MS = USΛSU
T
S , MF = UFΛFU

T
F , where US ,UF ∈ Rd are orthogonal

matrices and ΛS ,ΛF are diagonal.
Let an = (ΛS)n,n, αn = (ΛF )n,n. Let wS = −1

2Λ
−1
S UT

S vS ,

wF = −1
2Λ

−1
F UT

F vF , b = wT
S ΛSwS − cS , β = wT

F ΛFwF − cF .
Then,

P(x ,∇x) = ∇T
x U

TA

(
UT
S x +

1

2
Λ−1
S UT

S vs

)
UT∇x+C

(
UT
S x +

1

2
Λ−1
S UT

S vs

)
.

where

A(y) := diag

{
αm

(
d∑

n=1

any
2
n − b

)}d

m=1

and C (y) := βy ·diag {an}dn=1 y .
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A splitting approach

V ,H ≥ 0 two functions.

mS(x) = e−V (x) and m̂F (ξ) = e−H(ξ)

Then
K = e−V (x)e−H(−i∂x )e−V (x)

Formally: Baker-Campbell-Hausdorff formula

e−V (x)e−H(−i∂x )e−V (x) = e−Z(x ,∂x )

Z = H + 2V − 1

12
[H, [H,V ]] +

1

3
[V , [V ,H]] + · · ·

In general no convergence, possible sign issues...
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A splitting approach
In case of quadratic H and V it is known.

Formula (P. Alphonse, J. Bernier 2022)

e−
1
2
tanh(z)x2e

1
2
sinh(2z)∆e−

1
2
tanh(z)x2 = e−z(x2−∆)

Implies by scaling

e−
1
2
sinh(z)x2esinh(z)∆e−

1
2
sinh(z)x2 = e

−z(cosh(z)x2− 1
cosh(z)

∆)

e−
1
2
cx2ec∆e−

1
2
cx2 = e

−argsh(c)[
√
1+c2x2− 1√

1+c2
∆)

Explicit spectrum

spec{− 1

µ2
∆+ µ2x2} = {2n + 1, φn(µx)}n∈N,

φn Hermite functions.
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A splitting approach

Spectrum of e−
1
2
cx2ec∆e−

1
2
cx2ψn = λnψn

ψn = (1 + c2)
1
8φn

(
(1 + c2)

1
4 x
)
, (φn Hermite functions)

λn = e−argsh(c)(2n+1)

Theorem

If mS = e−
α
2
x2 , m̂F = e−

β
2
ξ2 then Kψn = λnψn with

ψn = β
1
4 (1+αβ)

1
8

α
1
4

φn

(√β
α(1 + αβ)

1
4 x
)

λn = e−argsh(
√
αβ)(2n+1)

and φn Hermite functions.

Easy generalization to higher dimension, more general quadratic operators.
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Numerical simulations

Discretization of the concentration operator K using N uniform points
along each dimension → concentration matrix K ∈ CNd×Nd

.
Eigenvectors of K.

1 Hermitian character: K∗ = K.

2 Structure: K = D∗BD, with B a block matrix where each block is
Toeplitz, and D is a diagonal matrix.

3 Its eigenvalues are real.

4 Its eigenvectors form an unitary basis of CNd
.
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Numerical remark

In 2d, we have

K =


K(0,0) K(0,1) · · · K(0,N−2) K(0,N−1)

K(1,0) K(1,1) · · · K(1,N−2) K(1,N−1)

...
... · · · ...

...

K(N−2,0) K(N−2,1) · · · K(N−2,N−2) K(N−2,N−1)

K(N−1,0) K(N−1,1) · · · K(N−1,N−2) K(N−1,N−1)

 ,

where each K(m,n) is a Toeplitz matrix of size N × N.

For j , k ∈ [[0,N − 1]]d ,

Kj ,k =
mS(x

(k))mS(x (j))

(2N − 1)d

∑
l∈[[0,2N−2]]d

∣∣∣m̂F (ξ
(l))
∣∣∣2 e i 2π

2N−1
l ·(j−k).
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New numerical algorithm

Using the a priori bounds: As c → 0, λj → 0.

For ω > 0, consider the masks

mS(x) = 1[−1,1](x) and m̂F (x) = 1[−ω,ω],

and their parameterized versions

mS(ε, x) = 1[−µ(ε),µ(ε)](x) and m̂F (ε, x) = 1[−µ(ε)ω,µ(ε)ω],

where we impose µ : R+ → [0, 1] nonincreasing with

µ(ε)→
{
1 as ε→ 0

0 as ε→∞.

It gives new operators K(ε) and new matrices K(ε).
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Eigenvalues of K(ε) as ε→ +∞
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Eigenvalues of K(ε) as ε→ +∞
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Eigenvalues of K(ε) as ε→ +∞
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Eigenvalues of K(ε) as ε→ +∞
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Eigenvalues of K(ε) as ε→ +∞
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Eigenvalues of K(ε) as ε→ +∞
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Eigenvalues of K(ε) as ε→ +∞
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Y. Le Hénaff (Uni Tü) Spectral concentration problem NA seminar 25 / 33



Summary: by varying ε, we are able to “separate” the eigenvalues.

Outline of the algorithm:

take ε large enough so that the first eigenvalue is distinct from the
others, and obtain its eigenvector. Check if it is a good approximation
of the true eigenvector (for the nonperturbed problem, based on some
numerical tolerance η).

If so, do the same process on the next eigenpair. If not, take ε a little
smaller and repeat the process.

In practice, one of the best scaling is

µ(ε) :=
1

(1 + ε4)1/4
.
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N1 = 150, η = 10−10.
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We wish to apply this varying mask idea in 2d
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mS = 1Disc(0,0.8) m̂F = 1Disc(0,0.3·2π)
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mS = 1cat−head m̂F = 1Disc(0,0.3·2π)
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mS = 1cat−head m̂F = 1Disc(0,0.3·2π)
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eigendecomposition obtained with the
varying mask algorithm.
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Summary of the algorithm
Advantages:

the approximate eigenvectors obtained are a unitary basis

the size of the approximation is controlled using η

it relies on standard eigendecomposition applied to modified matrices,
so the block-Toeplitz nature of K can be used

the scaling idea can be adapted to multidimensional situations, and it
also yielded good results in tested situations

the expected features are recovered (symmetry and localization)

Disadvantages:

this “shrinking and expanding” idea has worked for all our numerical
experiments, but there is NO guarantee that we can always separate
the eigenvalues enough as ε→ +∞ (even in 1d, it is not guaranteed!)

the choice of µ is entirely arbitrary, with no idea what would be better

there is no proof, nor intuition, that having the same scaling µ(ε) in
space and Fourier is the best choice
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Conclusion

We propose an algorithm to approximate the eigenvectors of the
discretized spectral concentration operator K, and it yields satisfying
results with expected features.
However, there is no rigorous proof that it should work, nor that the
assumptions used always hold.

Thank you!
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