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Abbreviations and Symbols

ℕ The set of nonnegative integers {0, 1, … }.
ℤ The set of integers {… , −1, 0, 1, … }.
ℝ The set of real numbers.
ℂ The set of complex numbers.
(𝑎, 𝑏) The open interval, consisting of real numbers 𝑎 < 𝑥 < 𝑏, for 𝑎, 𝑏 ∈

ℝ ∪ {±∞}.
[𝑎, 𝑏] The closed interval, consisting of real numbers 𝑎 ≤ 𝑥 ≤ 𝑏.
[[𝑝, 𝑞]] The set of integers between 𝑝 and 𝑞: {𝑘 ∈ ℤ ∶ 𝑝 ≤ 𝑘 ≤ 𝑞}.
∗ The convolution operator, (𝑓 ∗ 𝑔)(𝑥) = ∫

ℝ𝑑 𝑓(𝑦)𝑔(𝑥 − 𝑦)𝑑𝑦.
𝑖 The imaginary unit such that 𝑖2 = −1.
Re (𝑧) The real part of a complex number 𝑧.
Im (𝑧) The imaginary part of a complex number 𝑧.
𝐶𝑞(Ω) The set of continuous functions that are 𝑞 times differentiable over

Ω ⊂ ℝ𝑑, and such that 𝑓 (𝑞) is continuous on Ω. Here, 𝑓 (𝑞) denotes
the 𝑞-th derivative of 𝑥.

𝕃𝑝(Ω) The set of functions 𝑓 such that ∫
Ω

|𝑓(𝑥)|𝑝𝑑𝑥 < ∞, for Ω ⊂ ℝ𝑑,
𝑑 ≥ 1.

𝑊 𝑠,𝑝(Ω) For 𝑠 ∈ ℕ, this is the set of functions 𝑓 such that 𝐷𝛼𝑓(𝑥) ∈ 𝕃𝑝(Ω),
for 𝛼 ∈ ℕ𝑑 and 𝛼1 + ⋯ + 𝛼𝑑 < 𝑠. Here, 𝐷𝛼 = 𝜕𝛼1

𝜕𝑥𝛼1
1

… 𝜕𝛼𝑑

𝜕𝑥𝛼𝑑
𝑑

, and the
derivatives are taken in the distributional sense. When 𝑠 ∈ ℝ \ ℕ,
there is a well-defined meaning as well, but we will not use these
spaces in this manuscript.

𝐻𝑠 Other notation for 𝑊 𝑠,2.
∇𝑧 The usual gradient with respect to the variable 𝑧. We may omit the

subscript 𝑧 if the variable is clear from the context.
ℱ[𝑓], ̂𝑓 The Fourier transform of 𝑓 ∈ 𝕃2(ℝ𝑑), see Section II-5.1.
ℱ−1[𝑓] The inverse Fourier transform of 𝑓 ∈ 𝕃2(ℝ𝑑), see Section II-5.1.
DFT [{𝑥𝑘}𝑁−1

𝑘=0 ] The Discrete Fourier transform of a length-𝑁 sequence {𝑥𝑘}𝑁−1
𝑘=0 ,

see Section II-5.2.
FFT The Fast Fourier Transform, an efficient way of computing the Dis-

crete Fourier Transform
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DF Abbreviation for Dirac-Frenkel.
(O|P)DE(s) (Ordinary|Partial) Differential Equation(s)
(L|R)HS (Left|Right)-Hand Side
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Version Française

Il est généralement d’usage que la partie intitulée “Introduction” d’un manuscrit serve
à introduire le sujet de ce dernier. Elle ne servira pas à cela ici.

Non pas par extravagance ou volonté de l’auteur de changer les codes, mais essentielle-
ment car le contenu de ce manuscrit ne s’y prête guère. Il n’y a pas “un” sujet au coeur
du manuscrit, mais trois (très) différents. Ces sujets ne sont d’ailleurs pas nécessairement
en lien avec des méthodes particulaires modulées – le titre officiel de cette thèse – et c’est
pourquoi un titre plus approprié pour ce manuscrit pourrait être

Quelques contributions en Analyse Numérique et Mathématiques
Appliquées.

Le fil rouge est l’Analyse Numérique de façon générale. La thèse a été l’occasion de
découvrir plusieurs domaines et plusieurs communautés, et cet intérêt pour différents
sujets se traduit par des parties décorrélées.

Avant d’entamer le coeur de cette thèse, nous commencerons par faire quelques rap-
pels généraux d’analyse numérique. C’est l’objet de la partie II – Some preliminaries of
Numerical Analysis. Les différents chapitres de cette partie aborderons notamment la
discrétisation d’un problème continu, le splitting en temps, les méthodes spectrales, les
Transformées de Fourier (continue, discrète, et rapide), ainsi que le concept de complexité
algorithmique. Tous ces éléments sont des parties essentielles de beaucoup de problèmes
en analyse numérique. À ce titre, le contenu de chaque chapitre nécessiterait des livres
entiers pour pouvoir en expliquer tous les détails. Le but dans cette partie n’est évidem-
ment pas de parler de tout en détail, mais seulement de donner une idée (parfois grossière)
des problématiques rencontrées et des solutions apportées. Cette partie II peut être vue
comme une tentative de “vulgarisation” de l’analyse numérique. Le lecteur intéressé sera
renvoyé aux références pour en apprendre plus.

Si la lecture de la partie II n’a pas effrayé le lecteur, ce dernier aura un choix à faire :
lire les autres parties dans l’ordre, ou dans le désordre. En effet, les parties sont décorrélées
et elles sont présentées dans ce manuscrit dans un ordre arbitraire 1.

La partie III – The Vlasov-Poisson system traitera du système de Vlasov-Poisson,
et plus particulièrement d’une méthode particulaire qui a été développée au cours de la

1. En réalité, il s’agit de l’ordre chronologique de réalisation de cette thèse, faute de mieux.
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thèse. L’équation de Vlasov-Poisson est celle qui m’a donné envie d’essayer la recherche,
malgré une connaissance très superficielle de celle-ci. L’idée initiale de la thèse consis-
tait, comme son nom officiel l’indique, à regarder des solutions modulées. Par solutions
modulées, nous entendons des fonctions dont l’expression est connue et qui dépendent de
paramètres inconnus. Si la forme des fonctions est bien choisie, on peut espérer que ces
fonctions soient des solutions approchées du problème dès lors que les paramètres réussis-
sent à être identifiés. Il s’est avéré que la forme de ces fonctions modulées est loin d’être
facile à identifier pour le système de Vlasov-Poisson, mais creuser la littérature associée a
permis d’imaginer une nouvelle méthode numérique. Celle-ci fait en quelque sorte le pont
entre les méthodes Semi-Lagrangiennes et particulaires (du type Particle-in-Cell et Cloud-
in-Cell). En réalité, cette méthode avait déjà été introduite en 2011 par Barré, Olivetti
et Yamaguchi sans preuve de convergence ou d’analyse poussée. On l’a donc étudiée et
justifiée en détail. Des exemples numériques sont données pour vérifier son utilisation en
pratique. Cet algorithme est simple, et se base sur des briques élémentaires bien connues
: splitting en temps, quadratures, intégrateurs numériques simplectiques en temps, trans-
formée de Fourier (non-uniforme), et bien évidemment quelques éléments de la théorie
des espaces de Sobolev.

Le premier chapitre de la partie III sera dédié à la présentation de la littérature portant
sur le système de Vlasov-Poisson. Nous commencerons par présenter l’origine physique
des équations, ainsi que leur importance actuelle notamment dans le cadre du projet
ITER. Quelques propriétés relativement basiques du système de Vlasov-Poisson seront
ensuite discutées, avant de faire un tour d’horizon des travaux existants. Nous aborderons
notamment les grandes familles de méthodes numériques utilisées pour la simulation de
l’équation de Vlasov : les méthodes Semi-Lagrangiennes, les méthodes particulaires, et
également les méthodes spectrales bien qu’elles soient moins utilisées aujourd’hui qu’il y
a quelques décennies. Nous rentrerons ensuite dans le vif du sujet, en présentant dans le
chapitre suivant les détails de la méthode numérique puis en obtenant un théorème de
convergence. Il est à noter que cette estimation de l’erreur est “facilement” obtenue comme
la somme des erreurs des différentes briques qui composent la méthode. Des résultats
numériques sont ensuite présentés dans le cadre uni-dimensionnel, puis comparés aux
résultats obtenus avec une méthode semi-Lagrangienne. Cette partie sur le système de
Vlasov-Poisson s’achèvera sur la preuve du théorème de convergence, et sur une conclusion
abordant les limitations de la méthode et les perspectives possibles.

Malheureusement, le but initial de l’étude du système de Vlasov-Poisson n’a pas été
atteint. On rappelle que nous cherchions à obtenir des solutions modulées, c’est-à-dire
des fonctions ayant une forme connue, et dépendant d’un certain nombre de paramètres
que l’on met à jour afin que la fonction approche la solution du système. L’idée de ces
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solutions modulées a été en partie motivée par les travaux de Faou, Merle et Raphaël,
qui construisent des solutions modulées pour l’équation de Schrödinger afin d’obtenir une
explosion de la solution en temps infini, dans un cadre théorique. Dans le but de pouvoir
mieux comprendre ces solutions modulées et tenter d’appliquer des idées similaires au
système de Vlasov-Poisson, je me suis tourné vers ces travaux.

Il s’est avéré que, dans le cas de l’équation de Schrödinger linéaire avec potentiel
quadratique – également appelée Oscillateur Harmonique Quantique – il est possible
d’obtenir une description exacte et explicite des solutions modulées. Plus exactement,
si la condition initiale peut s’écrire sous la forme d’une somme de Gaussiennes, alors on
peut chercher la solution comme somme de fonctions Gaussiennes dépendant de certains
paramètres. L’évolution des paramètres peut être connue de façon exacte et on obtient
ainsi une solution exacte en tout temps. Ce résultat n’est pas nouveau, et est à la base
des Variational Gaussian wavepackets, déjà beaucoup utilisés en pratique. Cependant, le
résultat que nous avons obtenu avec les Gaussiennes s’étend naturellement à toutes les
fonctions de Hermite-Gauss. Ainsi, il n’est pas nécessaire de supposer la condition initiale
comme s’écrivant sous forme de somme de Gaussiennes. Cela est avantageux car la dis-
crétisation d’une fonction arbitraire en somme de Gaussiennes est un problème difficile à
traiter en pratique.

Le travail effectué dans ce cadre est décrit dans la partie IV – The Schrödinger equa-
tion. Tout comme pour la partie III, nous commençons par un tour d’horizon de la lit-
térature concernant l’équation de Schrödinger. Nous résumons des résultats théoriques
connus, et décrivons des méthodes numériques utilisées pour approcher la solution de
l’équation. À la suite de cela, nous présentons la modulation de l’équation de Schrödinger
linéaire, pour la base des fonctions de Hermite-Gauss. Cette modulation est exacte. Puis,
nous considérons l’équation de Schrödinger non linéaire avec terme cubique, également
appelée dans certains domaines équation de Gross-Pitaevskii. La nonlinéarité introduite
met à mal l’intégration exacte des paramètres, et nous sommes réduits à utiliser une ap-
proximation numérique connue sous le nom de Principe de Dirac-Frenkel. Il s’agit d’une
méthode essentiellement utilisée jusqu’à maintenant dans le cadre linéaire, qui présente
des problèmes inhérents et auparavant identifiés. Nos exemples numériques montrent que
les soucis identifiés dans le cadre linéaire apparaissent également dans le cadre non linéaire.
Nous arrivons à construire des exemples qui évitent de faire apparaître lesdits problèmes,
et pour ceux-ci l’approximation numérique est correcte. Nous construisons également des
exemples numériques qui permettent à nouveau d’illustrer les soucis du principe de Dirac-
Frenkel.

Le contenu de cette partie présente les travaux et résultats qui ont été faits en collab-
oration avec Erwan Faou et Pierre Raphaël, en partant de leurs travaux théoriques.

16



Introduction

La liberté accordée durant ma thèse m’a également permis d’échanger avec des acteurs
du secteur privé 2, et un problème de mathématiques appliquées s’est vite dégagé de
ces échanges. La partie V – The spectral concentration problem en est le résultat, et
peut être lu sans relation aucune avec les deux autres – si ce n’est via le prisme très
général de l’analyse numérique et des mathématiques appliquées. Cette partie a été, pour
moi, la plus intéréssante d’un point de vue humain et scientifique. Humainement, j’ai eu
l’occasion de bloquer sur ce problème durant plusieurs mois 3, d’être amené à découvrir
des mathématiques que je ne connaissais pas ou très peu, et de vraiment lutter contre un
problème d’apparence très simple…Il a été parfois compliqué de trouver la motivation pour
s’attaquer à un problème qui ne présente quasiment pas de prises et qui a été relativement
peu étudié par le passé. Mais, et je ne pourrai pas le souligner assez, la motivation d’Erwan
a fini par déteindre sur moi quand j’en manquais légèrement, et c’est grâce à lui que cette
partie a pu voir le jour. En ce qui concerne le point de vue scientifique, il s’agit du contenu
de la partie V.

Comme parfois en mathématiques, les problématiques compliquées peuvent être for-
mulées de façon simple 4 : étant donnés deux ensemble compacts 𝐷1, 𝐷2 ⊂ ℝ𝑑, il s’agit
de chercher une fonction qui admet une transformée de Fourier à support dans 𝐷2, et
dont la norme 𝕃2(𝐷1) est maximale par-rapport à sa norme 𝕃2(ℝ𝑑). En plus d’avoir de
nombreuses applications physiques, ce problème admet une particularité mathématique
intéressante : une fois qu’une telle fonction est obtenue, on peut chercher une nouvelle
fonction solution de ce problème de maximisation en imposant d’être orthogonale à la
précédente. En procédant ainsi à l’infini, on obtient une base de 𝕃2(ℝ𝑑), dont les élé-
ments sont fonctions propres d’un certain opérateur, appelé opérateur de concentration.
Ce sont les valeurs propres associées à ces fonctions propres qui admettent un comporte-
ment intéressant : avec la bonne normalisation, les premières valeurs propres sont très
proches de 1 tandis que les suivantes sont très proches de 0. L’interprétation physique de
ce phénomène est la suivante : si l’on cherche à décomposer une fonction qui admet une
transformée de Fourier compacte et qui est concentrée en espace dans un autre ensemble
compact, alors il suffit de décomposer cette fonction dans l’ensemble composé des fonc-
tions propres de l’opérateur de concentration, associées aux valeurs propres proches de 1.
Les fonctions propres associées aux valeurs propres proches de 0 peuvent être interprétées
comme “ne contenant que très peu d’informations”. Cela donne donc un seuil naturel et
intuitif pour la troncature de cette base, contrairement à beaucoup d’autres bases utilisées
en pratique (comme celles de Fourier ou Hermite-Gauss par exemple). Cependant, cette
particularité rend la recherche de fonctions propres compliquée au niveau théorique. Qu’à

2. L’entreprise souhaite rester anonyme pour des raisons de confidentialité.
3. J’ai arrêté de compter après 6 mois…
4. L’exemple le plus connu étant probablement le problème des 3𝑛 + 1.

17



Introduction

cela ne tienne, discrétisons notre opérateur de concentration et approchons les fonctions
propres de celui-ci par des vecteurs propres de l’opérateur discrétisé. Enfer et damnation,
le problème évoqué précédemment apparaît aussi au niveau numérique !

La partie V – The spectral concentration problem s’ouvre sur une présentation dé-
taillée du problème, suivie d’une explication de la solution obtenue par Landau, Pollak
et Slepian dans les années 1960 et 1970. Leur solution est extrêmement élégante, mais
ne s’applique que dans un cadre restreint. De nouveau, nous ferons un tour d’horizon de
la littérature concernant ce problème, et verrons notamment qu’il n’existe presque pas
de solutions – ni même de procédés numériques – portant sur des cas qui s’éloignent du
cadre “agréable” pour lequel une solution élégante est connue. Armés d’interprétation
physique (en guise de couteau) et d’exemples numériques (en guise d’autre chose

🤡

),
nous exposerons les problèmes liés à la détermination numérique de ces vecteurs propres.
Afin de pouvoir regarder des contextes qui s’éloignent du cadre connu, nous formaliserons
la théorie nécessaire à l’étude de l’opérateur de concentration sur des domaines complète-
ment arbitraires. L’intuition physique nous permet ensuite de construire un algorithme
qui donne une approximation des vecteurs propres de l’opérateur de concentration dis-
crétisé. Enfin, nous vérifions sur des exemples numériques non étudiés jusqu’à maintenant
les résultats obtenus et leur cohérence physique.

La dernière partie de ce manuscrit sera une conclusion rappelant les résultats obtenus
dans les parties III, IV et V. Elle sera rapide, puisqu’une conclusion détaillée sera donnée
à la fin de chaque partie.

J’espère que ce manuscript sera agréable à lire.

Bonne lecture !
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English version

It is generally accepted that the Part named “Introduction” in a manuscript is used
to introduce the subject of said manuscript. It is not the case here.

It is neither because the author is crazy nor because he wants to change well-established
conventions, but rather because it is not appropriate for this kind of manuscript. Indeed,
there is not one unique subject treated in this manuscript, but three (very) different ones.
A more appropriate title would be

Some contributions to Numerical Analysis and Applied Mathematics.

The common thread is Numerical Analysis in a global sense. During the PhD journey, I
had the occasion of discovering several fields and communities, and my interest for various
subjects is expressed via uncorrelated parts in this manuscript.

Before getting into the heart of the manuscript, we give some brief ideas, concepts, and
results concerning numerical analysis. This is the topic of Part II – Some preliminaries
of Numerical Analysis. The various chapters of this Part will cover the discretization of
a continuous problem, time-splitting, spectral methods, Fourier transforms (continuous,
discrete, and fast), as well as computational complexity. All of these notions are central
to many problems in numerical analysis. As such, the content of each chapter would need
several books in order to give all the details. The goal of this Part is obviously not to talk
about everything in a complete sense, but rather to explain some issues one can face, and
a few ideas about how to solve them. Part II can be understood as an attempt to explain
numerical analysis in layman’s terms. We refer the interested reader to the references.

If the reading of Part II has not afraid the reader, they will have to make a choice:
read all the parts in the order they are written, or in any other order. Indeed, since the
parts are uncorrelated, they are presented in this manuscript in the chronological order
of the thesis completion, but this is rather arbitrary.

Part III – The Vlasov-Poisson system will be treating the subject of the Vlasov-Poisson
system, and more specifically a particle method which has been studied by the author of
the manuscript. The Vlasov-Poisson system is perhaps the problem that gave me the will
to pursue a PhD, even though I had a very poor knowledge about it. The initial idea of the
thesis, as the official name states, was to look for modulated solutions. Here, “modulated
solutions” means that we are looking for functions with a given form (known a priori), that
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depend on unknown parameters. The idea being, if one is able to know the time evolution
of the parameters, we can get an approximate solution at any time by just plugging the
value of the parameters into the function. If the form of the function is well chosen, we
can hope that the functions depending on the parameters are good approximate solutions.
We tried, in vain, to find modulated solution for the Vlasov-Poisson system. It turned out
to be more difficult than we first hoped. In the meantime, I started reading the literature
about the Vlasov-Poisson system, and an idea for a numerical method came up. It is a kind
of link between the Semi-Lagrangian and particle methods (such as Particle-in-Cell and
Cloud-in-Cell). To be honest, this method had already been introduced in 2011 by Barré,
Olivetti and Yamaguchi, but they just described it briefly without performing any analysis
on it. We studied a slight generalization of the method, and analyzed the error term. The
algorithm is very simple, and relies on well-known elementary foundations: time-splitting,
quadratures, simplectic numerical integrators in time, (nonuniform) Fourier transform,
and obviously some elements of the theory of Sobolev spaces.

The first chapter of Part III is dedicated to a general presentation of the Vlasov-Poisson
system. We start by presenting the physical and historical origins of the equations, as well
as their current importance. This includes a very brief presentation of the ITER project.
Some relatively basic properties of the Vlasov-Poisson system are then discussed, before
giving an overview of the literature about this topic. We will also present the main families
of numerical schemes used for the simulation of the Vlasov equation: Semi-Lagrangian
methods, particle methods, and also spectral methods even though they are less used
today than a few decades ago. We then proceed to the heart of Part III, by presenting
the algorithm from Barré, Olivetti and Yamaguchin and stating a convergence result.
The convergence result is intuitive (but cumbersome to show) once we understand that
the error term is just the sum of the error terms of each elementary foundation. Some
numerical results are then presented in the one-dimensional case, before being compared to
the results obtained with a Semi-Lagrangian scheme. This Part about the Vlasov-Poisson
system ends with the proof of the convergence result, and with a conclusion discussing
the limitations of the methods and its perspectives.

Unfortunately, the initial goal of the study of the Vlasov-Poisson system has not been
reached. We recall that we were looking for modulated solutions, or in other words, for
functions with a known form and depending on a number of parameters that we can
update to approximate the solution. Part of our motivation in looking for such func-
tions lies in the works of Faou, Merle and Raphaël, who studied modulated solutions for
the Schrödinger equation in order to obtain infinite-time blow-up of the solutions, in a
theoretical framework. As an attempt to better understand their modulated solutions, I
started studying their works in more details.
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It turned out that, in the case of the linear Schrödinger equation with quadratic
potential – also known as Quantum harmonic oscillator – it is possible to obtain an
exact and explicit description of the modulated solutions. More specifically, if the initial
condition can be written as a sum of Gaussian functions, then it is possible to look for
the solution as a sum of Gaussian functions depending on some unknown parameters.
Moreover, the time evolution of these parameters can be known exactly. This result is not
new, and it is the starting point of the Variational Gaussian wavepackets, widely used
today. However, the result we obtained with Gaussian functions naturally extends to all
Hermite-Gauss functions. Thus, it is not necessary to assume that the initial condition can
be written as a sum of Gaussian functions, which is a good thing: indeed, the discretization
of an arbitrary function into a sum of Gaussian functions is still a difficult task in practice.

The work done in this framework is given in Part IV – The Schrödinger equation. As
in Part III, we start with an overview of the literature treating the Schrödinger equation.
We recall some known theoretical results, and also some numerical methods used to ap-
proximate the solution. After that, we present the modulation of the linear Schrödinger
equation applied to the Hermite-Gauss basis. This modulation is exact. Then, we con-
sider the nonlinear Schrödinger equation with cubic terms, also called in some fields the
Gross-Pitaveskii equation. The nonlinearity introduced breaks the exact integration of
parameters, and we have to resort to using a numerical approximation known as Dirac-
Frenkel principle. It is a numerical method which has been used mostly in the linear case
until now, and which has some known issues. Our numerical examples show that the issues
identified in the linear case also appear when considering the nonlinear equation. More-
over, by understanding the cause of these issues, we can build some numerical examples
that avoid the issues. For these examples, the numerical approximation is very satisfying.
We also build some examples that illustrate situations where the Dirac-Frenkel principle
breaks down.

The content of Part IV presents the work and results obtained in collaboration with
Erwan Faou and Pierre Rapahël, with their common work as a starting point.

The freedom given to me during my PhD has also enabled me to talk with a company
from the private sector 5, and during these discussions a numerical problem of applied
mathematics has emerged. The Part V – The spectral concentration problem is the result,
and bears no link with the two previous sections – except via the very general prism
of numerical analysis and applied mathematics. This Part has been, to me, the most
interesting from both the personal and scientific points of view. From the personal point
of view, I have been stuck during ages on this problem 6, I worked on mathematics I

5. The name of the company is not given for confidentiality reasons.
6. I stopped counting after 6 months…
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barely didn’t know, and I struggled against a seemingly very simple problem. At times,
it was difficult to find the motivation to work on a problem which just felt like a huge
unclimbable wall. Fortunately, and I cannot stress this enough, Erwan’s motivation always
rub off on me, and it is thanks to him that this part of the manuscript is written today.
The scientific side of this experience is the content of Part V.

It happens sometimes in mathematics that a difficult problem can be expressed in a
very simple manner 7. This is an example: given two compact sets 𝐷1, 𝐷2 ⊂ ℝ𝑑, we are
looking for a function which has a compact Fourier transform with support in 𝐷2, and
whose 𝕃2(𝐷1) norm is maximal with respect to its 𝕃2(ℝ𝑑) norm. In addition to having
several physical applications, this problem has an interesting property: once a function
satisfying our criterion is obtained, we can look for a new solution with the additional con-
straint of being orthogonal to the previous one. By doing so an infinite number of times,
we get a basis of 𝕃2(ℝ𝑑), of which each element is an eigenfunction of a certain operator,
called the concentration operator. The interesting property we mentioned is seen when
looking at the associated eigenvalues: with the correct normalization, the first eigenvalues
are very close to one, then quickly decrease to zero, and an infinite number of them are
very close to zero. The physical interpretation of this phenomenon is the following: if we
want to decompose a function with a compactly supported Fourier transform and which
is concentrated in another compact set, then it suffices to decompose this function into
the subset composed of the eigenfunctions of the concentration operator, associated to
eigenvalues close to one. The eigenfunctions associated to eigenvalues close to zero can be
interpreted as “being able to contain only a very small amount of information”. This gives
a natural and intuitive threshold on where to truncate the basis, unlike many other bases
used in practice (for example, Fourier or Hermite-Gauss). However, this interesting prop-
erty is also what makes the search for eigenfunctions difficult from the theoretical point
of view. As any numerical analyst, if things don’t work out theoretically, let’s take a look
at the numerical results! Damn, the previously mentioned issue also appears numerically
in the discretized framework!

Part V – The spectral concentration problem starts with a detailed presentation of
the problem, followed by an explanation of the solution obtained by Landau, Pollak and
Slepian during the 1960s and 1970s. Their solution is extremely elegant, but only ap-
plies to a restricted framework. As in the previous parts, we then give an overview of
the (relatively dry) literature about this problem, and we will see that there is almost
no solution – nor numerical methods – treating situations very different from the “nice”
framework studied by Slepian. Armed with physical interpretation and numerical exam-
ples, we explain the cause of the problems observed when trying to obtain eigenvectors

7. One of the most famous examples being the 3𝑛 + 1 problem.
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of the discretized problem. In order to be able to look at situations that differ from the
known framework, we formalize the theory needed to study the concentration operator on
completely arbitrary domains. The physical intuition then allows us to give an algorithm
which yields approximate eigenvectors of the discretized concentration operator. We then
check on previously unstudied numerical examples the results obtained and their physical
coherence.

The last Part of this manuscript is a conclusion recalling the main results obtained in
parts III, IV and V. It is very brief, because a detailed conclusion will be given at the end
of each of these parts.

I hope that this manuscript will be delightful to read.

Enjoy!
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Part II,

This Part is devoted to general methods used in numerical analysis. It is self-contained,
and can be read separately from the other chapters. The motivation is to get a grasp of
some importants methods or ideas in numerical analysis, that have been used in the
making of this thesis. We try to not go into too much detail for now, and only present
essential ideas. If the reader is interested in studying these methods into more details, we
refer them to the cited works and references therein.
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Representation of
continuous problems on a
computer

Part II

1 C
H

A
P

T
E

R

The usual problems we face in analysis and in the context of partial differential equa-
tions are of continuous nature: most of the physical problems are modelled as being
continuous, and mathematics in the continuous setting are often easier to deal with. It is
“easier to deal with” for us, humans, because we see the world as continuous. But even
if we understand what these continuous problems mean, their solutions are, most of the
time, very difficult to obtain exactly.

If it is not possible to obtain exact solutions, it should be easier to obtain approximate
solutions, right? It turns out, it is also difficult to do so in general in the continuous setting
for us humans.

If it is not possible to obtain approximate continuous solutions, is it easier to obtain
approximate discrete solutions? Technically yes, in general. But it means that we, humans,
would need to perform many, many, many (many!) computations by hand, usually the
same boring ones. This is where computers come into play. They are wonderful in discrete
settings, and love to do repeating operations 1.

Great! So when we have an equation, we just give it to the computer and it will give
us a discrete approximate solution. Easy enough, right? … NO. There are several hidden
layers of difficulties in the previous sentence.

II-1.1 Implicit hypotheses

II-1.1.1 Discretization of infinite domain

The first difficulty lies in that problems of interest are generally posed on the whole real
line ℝ = (−∞, +∞), or the 𝑑-dimensional real plane ℝ𝑑 = (−∞, +∞)×...×(−∞, +∞).
An infinite continuous domain must be discretized into an infinite discrete domain, but our
computers don’t have an infinite memory to hold an infinite number of points. Darn! Thus,

1. At least mine never complained…
🤡
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Part II, Chapter II-1 – Representation of continuous problems on a computer

we need to reduce the number of points to a manageable one…When devising numerical
schemes, we usually place ourselves in comfortable situations from the discretization point
of view. Examples of “comfortable” situations are given below:

1. If the continuous problem is given on an unbounded domain (e.g. ℝ𝑑), we try to find
the “most significant” finite-volume subset of the unbounded domain. For instance,
for a time-dependent equation with a compactly supported initial condition, we
can guess (and sometimes check theoretically) that after a small time the initial
condition hasn’t changed a lot. Hence, for a given time of simulation, we can make
a guesstimate of how large the support of the solution will become. Depending
on the equation at hand, the support of the solution can remain compact and
thus one only needs to discretize the compact support. If no clear finite-volume
subset can be found, we can try find a “good enough” subset. The typical example
is 𝑓(𝑥) = 𝑒− 𝑥2

2 , where |𝑓(𝑥)| < 10−16 for |𝑥| ≥ 9. For such a quickly decaying
function, we can approximate it by a compactly supported function and use the
previous ideas. Note that this value of 10−16 is not chosen at random, it is of the
order of magnitude of the smallest nonzero value that a computer can represent in
a usual floating-point format 2. Hence, choosing [−9, 9] instead of ℝ is enough to
represent 𝑒− 𝑥2

2 on a computer for its nonzero values, and then extend it by zero
outside on (−∞, 9) ∪ (9, +∞).

2. If the continuous problem is given on a periodic domain, we discretize the periodic
domain and use periodic boundary conditions to “wrap the solution around”.

II-1.1.2 From continuous to discrete problem

The second issue is the discretization: how to go from a continuous problem to a
discrete version? If I have a problem posed on [−1, 1], and I want to discretize it using
3 points, I have infinitely many possibilities. I can choose my discretization points to
be {−1, 0, 1}, or {−1, −0.5, 0}, or {−2/3, 0, 2/3}, or {−0.5, 0.99, 1}, …Depending on the
discretization chosen, the results can greatly vary. The general intuition is that no region
of the continuous domain is more interesting than an other, thus a uniform discretization
where the points are equally spaced is generally best. There exist cases where the physical
nature of the continuous problem imposes that some regions must be discretized in finer
details than other regions, but this will be of no interest to us in this work.

2. More precisely, a double-precision floating-point variable is represented by 64 bits: 1 for the sign,
11 for the exponent, and 52 for the significand. The significand is used for representing the decimal part,
and 2−52 ≈ 2.2 × 10−16. This value is often called the machine epsilon, or machine precision.
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II-1.1. Implicit hypotheses

II-1.1.3 How good is the discretization?

The third difficulty can only be understood once the two previous ones are clear, it is
called convergence. If an algorithm is convergent, it is meant that, when the number of
discretization points increases, the approximate solution gets closer to the exact solution
evaluated at the discretization point. It may sound a little counter-intuitive, but knowing
the exact solution is generally not needed for the study of convergence.

A major part of numerical analysis consists in converting continuous problems into
discrete ones, and ensuring the discrete problems yield solutions that are close enough to
the exact continuous solutions.
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The method of splitting, sometimes called the fractional step method, consists in split-
ting an equation into simpler parts. The underlying idea is that, even though an equation
is made of several simple parts, the full equation may be very difficult to solve. Some early
records of fractional step methods can be found in [24] and the references therein for the
USSR developments, and in [22] for the Western developments.

We refer to [18, 14, 16] for fairly recent guides on splitting methods.

Let us consider the following ordinary differential equation:

𝑦′ = 𝐴𝑦 + 𝐵𝑦, (II-2.1)

where 𝐴, 𝐵 are some operators, and suppose that the solutions to

𝑦′ = 𝐴𝑦 (II-2.2)

and
𝑦′ = 𝐵𝑦 (II-2.3)

are known, or can be approximated easily.
The operators 𝐴, 𝐵 may involve very different phenomena, and the solution to (II-2.1)

has to approximate these very different phenomena. It can be difficult to obtain an ap-
proximate solution depending on the different phenomena at hand.

Moreover, it can happen that we wish to be able to use different numerical schemes
for the 𝐴-part and the 𝐵-part, because some schemes are better suited than others for
some phenomena.

It may seem intuitive that, if one solves (II-2.2) on a timestep Δ𝑡, and then (II-2.3)
on another timestep Δ𝑡, the solution we obtain should be close to the solution of (II-2.1).
But how close?

Well, this question can be answered using the Baker-Campbell-Hausdorff formula (see
[2] and [14, Section III.4.2]):

exp(𝑡𝐴) exp(𝑡𝐵) = exp(𝑡𝐶), (II-2.4)
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where

𝑡𝐶 = 𝑡(𝐴 + 𝐵) + 𝑡2

2
[𝐴, 𝐵] + 𝑡3

12
([𝐴, [𝐴, 𝐵]] + [𝐵, [𝐵, 𝐴]]) + 𝒪(𝑡4), (II-2.5)

and [𝐴, 𝐵] ∶= 𝐴𝐵 − 𝐵𝐴 is the commutator of the operators 𝐴 and 𝐵.
The notation exp(𝑡𝐴) is a shorthand for the evolution operator associated to the ODE

(II-2.2). In other words, if (II-2.2) is supplied with the initial condition 𝑦(𝑡0) = 𝑥, we can
write

𝑦(𝑡) = exp((𝑡 − 𝑡0)𝐴)𝑥.

Then, the LHS of (II-2.4) corresponds to solving (II-2.3) over a time 𝑡, and then using
this as the new starting point for solving (II-2.2) over a time 𝑡.

What the BCH formula (II-2.4)–(II-2.5) states is that solving (II-2.3) over a time 𝑡
and then solving (II-2.2) over a time 𝑡, is approximately the same as solving (II-2.1) over
a time 𝑡. The error made is of order 𝒪(𝑡2).

The formula (II-2.4) is usually referred to as the Lie-Trotter splitting, which is of
order 1. Another famous splitting method is the Strang splitting, sometimes also called
Störmer-Verlet scheme:

exp ( 𝑡
2

𝐴) exp 𝑡𝐵 exp ( 𝑡
2

𝐴) .

It is this time of order 2, which means that this evolution operator is approximately the
same as exp(𝑡(𝐴 + 𝐵)) up to some error term 𝒪(𝑡3).

The order of the splitting method can be increased, and the easiest way consists in
composing a low-order splitting scheme with itself. However, some better properties can
be obtained by choosing correctly the coefficients of the splitting. We refer to [8] for a
work obtaining order-6 splitting coefficients in the context of solving the Vlasov-Poisson
system.

Recently, exact splitting methods have been studied for a certain class of differential
operators [1, 5], and their numerical efficiency has been assessed in [6].
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Spectral methods consists in expanding the unknown function 𝑓 in a given basis {𝜓𝑗}𝑗:

𝑓 = ∑
𝑗

𝑓𝑗𝜓𝑗

An equation on 𝑓 can generally be reformulated so that it is now only about expansion
coefficients 𝑓𝑗, and this new equation on the coefficients can sometimes be simpler than
the original one.

It will be clearer with an example. We consider the one-dimensional linear Schrödinger
equation with quadratic potential on ℝ+ × ℝ:

𝑖𝜕𝑡𝑢(𝑡, 𝑥) + 𝜕2
𝑥𝑢(𝑡, 𝑥) − 𝑥2𝑢(𝑡, 𝑥) = 0. (II-3.1)

We know that the Hermite functions {𝜓𝑛}𝑛∈ℕ form a basis of 𝕃2(ℝ), and they satisfy

𝜓𝑛(𝑥)″ + (2𝑛 + 1 − 𝑥2)𝜓𝑛(𝑥) = 0.

Hence, at each time 𝑡, we can decompose the function 𝑢(𝑡, ⋅) into the Hermite basis, and
we then get

𝑢(𝑡, 𝑥) = ∑
𝑛∈ℕ

𝑐𝑛(𝑡)𝜓𝑛(𝑥),

where 𝑐𝑛 are complex coefficients depending on time. By plugging this expansion of 𝑢 into
(II-3.1) and using orthogonality of the basis functions, one obtains:

𝑐′
𝑛(𝑡) = −𝑖(2𝑛 + 1)𝑐𝑛(𝑡),

which can be easily solved to get 𝑐𝑛(𝑡) = 𝑒−𝑖𝑡(2𝑛+1), and thus

𝑢(𝑡, 𝑥) = ∑
𝑛∈ℕ

𝑐𝑛(0)𝑒−𝑖𝑡(2𝑛+1)𝜓𝑛(𝑥).

By using an appropriate basis of functions, the partial differential equation (II-3.1) on
𝑢 could be solved by solving only ordinary differential equations.
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Another example is the following: consider the Poisson equation

Δ𝑥Φ(𝑥) = 𝜌(𝑥) (II-3.2)

for 𝑥 ∈ 𝕋𝑑 ∶= (ℝ/(2𝜋ℤ))𝑑, where 𝜌 is a given zero-average function, and Φ is the unknown.
Since the domain is periodic, the Fourier family {𝑒𝑖𝑛⋅𝑥}

𝑛∈ℕ𝑑 is a basis of 𝕃2(𝕋𝑑). Hence,
we can write

Φ(𝑥) = ∑
𝑛∈ℕ𝑑

𝑐𝑛𝑒𝑖𝑛⋅𝑥

and
𝜌(𝑥) = ∑

𝑛∈ℕ𝑑

𝑑𝑛𝑒𝑖𝑛⋅𝑥.

Since ∫
𝕋𝑑 𝜌 = 0, we have 𝑑(0,…,0) = 0. We then get:

Δ𝑥Φ(𝑥) = ∑
𝑛∈ℕ𝑑

−𝑐𝑛|𝑛|2𝑒𝑖𝑛⋅𝑥 = 𝜌(𝑥) = ∑
𝑛∈ℕ𝑑

𝑑𝑛𝑒𝑖𝑛⋅𝑥.

By orthogonality of the basis functions, we obtain

𝑐𝑛 =
⎧{
⎨{⎩

− 𝑑𝑛
|𝑛|2 = −∫

𝕋𝑑 𝜌(𝑧)𝑒−𝑖𝑛⋅𝑧𝑑𝑧
|𝑛|2 , if 𝑛 ≠ 0,

0, if 𝑛 = 0,

and thus

Φ(𝑥) = ∑
𝑛∈ℕ𝑑

−
∫

𝕋𝑑 𝜌(𝑧)𝑒−𝑖𝑛⋅𝑧𝑑𝑧
|𝑛|2

𝑒𝑖𝑛⋅𝑥.

We refer to [21] for more details about spectral methods. Numerically, one has to be
cautious because the basis is (generally) countably infinite and thus numerical simulations
need to truncate the basis. Depending on the equation considered, the truncation may or
may not have a huge numerical importance: for linear equations the truncation often does
not cause too much trouble, but for nonlinear equations it generally does. This is due to
the fact that nonlinear equations “create modes” and eventually modes that are beyond
the truncation.

For instance, [17] used a Hermite expansion on the Vlasov equation and reported that
truncating the Hermite basis leads to numerical unstabilities.

33



Part II
C

H
A

P
T

E
R 4 Complexity

In this section we will focus on the computational complexity, and give some details
about what is meant when an algorithm is “faster” than an other.

Of course, runnning a given algorithm on a modern-day Nasa supercomputer will
probably run faster than on the ENIAC 1. This is not what is meant here.

In order to have a hardware-independent measure of the running-time of an algorithm,
we count the number of elementary mathematical operations like additions, substractions,
multiplications, and divisions. We assume that these four elementary mathematical op-
erations are equally fast, though this is not true in general. Most of the time, the exact
number of elementary operations is not known, so we give only an order of magnitude
using the “big-O” notation. The “big-O” notation, generally denoted 𝒪, means “of the
order of magnitude of”.

For example, let 𝑇 (𝑁) be the total number of operations for an algorithm with a
length-𝑁 input, and assume 𝑇 (𝑁) = 𝒪(𝐶(𝑁)) for some function 𝐶. This means that
there exist constants 𝑘2 > 𝑘1 > 0 that do not depend on 𝑁, such that

𝑘1𝐶(𝑁) ≤ 𝑇 (𝑁) ≤ 𝑘2𝐶(𝑁)

Remark II.1

It is important to note that the complexity depends only on the algorithm used and the
length of its input, and that it is not an intrinsic property of the problem considered.

In order to make this notation clearer, we give in the next Section two classical exam-
ples and estimate their complexity.

1. Electronic Numerical Integrator and Computer, the first programmable, electronic, general-purpose
digital computer, completed in 1945.
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II-4.1 Examples

II-4.1.1 Sum of integers

The most straightforward way to compute the sum of the first 𝑛 integers starting from
1 consists in going through each one of them and adding them. There are 𝑛 integers, so
it needs 𝑛 − 1 additions in total. Thus, its complexity is 𝒪(𝑛 − 1) = 𝒪(𝑛).

On the other hand, if one uses the famous Gauss relation:

𝑛
∑
𝑘=1

𝑘 = 𝑛(𝑛 − 1)
2

,

there are only three operations: a substraction, a multiplication, and a division. This
number of three operations does not depend on 𝑛, thus its complexity is 𝒪(1).

II-4.1.2 Fibonacci sequence

The recurrence relation definining the usual Fibonacci sequence is:

𝐹𝑛+2 = 𝐹𝑛+1 + 𝐹𝑛, 𝐹0 = 0, 𝐹1 = 1.

The most straightforward way to compute the 𝑛-th element consists in applying the
recursive relation. If we let 𝑇 (𝑁) be the number of additions required to compute the
𝑁-th Fibonacci number, we have the following relation:

𝑇 (𝑁) = 𝑇 (𝑁 − 1) + 𝑇 (𝑁 − 2) + 1.

Indeed, to compute the 𝑁-th Fibonacci number we have to compute the two previous
Fibonacci numbers and add them together. It is possible to show that

𝑇 (𝑁) = 1√
5

[(−𝜑−)𝜑𝑁
− + (−𝜑+)𝜑𝑁

+ −
√

5] , 𝜑+ = 1 +
√

5
2

, 𝜑− = 1 −
√

5
2

.

Asymptotically, we get 𝑇 (𝑁) = 𝒪(𝜑𝑁
+ ).

On the other hand, one can note that, if 𝐹𝑛 and 𝐹𝑛+1 are stored in memory, then 𝐹𝑛+2

can be computed with only one addition. This means that the total number of additions
required to compute 𝐹(𝑁) is only 𝑁 − 1. In other words, 𝑇 (𝑁) = 𝒪(𝑁). This example
also shows that, sometimes, computational complexity can be improved by increasing
memory complexity. However, here we always have to store only 2 values so that the
memory complexity is 𝒪(1) (i.e. it does not increase as 𝑁 increases).
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In most algorithms, the total number of operations may depend on the input. We
can then talk about a “worst case” complexity, “best case” complexity, and “average”
complexity as well. The names are pretty self-explanatory. In general, the computational
complexity refers to the asymptotic behavior as 𝑁 → ∞.

If an algorithm has a length-𝑁 input, it is said to be constant if its complexity is 𝒪(1),
linear if its complexity is 𝒪(𝑁), quadratic if the complexity is 𝒪(𝑁2), …
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II-5.1 Continuous Fourier transform

The convention for the Fourier transform used in this manuscript is the following: for
𝑓 ∈ 𝕃2(ℝ𝑑), the Fourier transform ℱ ∶ 𝕃2(ℝ𝑑) → 𝕃2(ℝ𝑑) is defined by

ℱ[𝑓](𝜉) ∶= ∫
ℝ𝑑

𝑓(𝑥)𝑒−𝑖𝜉⋅𝑥𝑑𝑥. (II-5.1)

We may use the shorthand ̂𝑓 to denote ℱ[𝑓]. For 𝑔 ∈ 𝕃2(ℝ𝑑), the inverse Fourier transform
ℱ−1 ∶ 𝕃2(ℝ𝑑) → 𝕃2(ℝ𝑑) is given by

ℱ−1[𝑔](𝑥) ∶= 1
(2𝜋)𝑑 ∫

ℝ𝑑

𝑔(𝜉)𝑒𝑖𝑥⋅𝜉𝑑𝜉 = 1
(2𝜋)𝑑 ℱ[𝑔](−𝑥). (II-5.2)

A fundamental theorem in the theory of Fourier integrals is the Plancherel theorem.
We give below a statement of the theorem which we adapted to our Fourier convention.
It can also be found in [19, Section IX.2] or [23, 9].

Theorem II.1: Plancherel

The Fourier transform ℱ ∶ 𝕃2(ℝ𝑑) → 𝕃2(ℝ𝑑) defined by (II-5.1) is invertible, and its
inverse ℱ−1 is given by (II-5.2). We have,

‖ℱ[𝑓]‖2
𝕃2(ℝ𝑑) = (2𝜋)𝑑 ‖𝑓‖2

𝕃2(ℝ𝑑) ,

and
∥ℱ−1[𝑓]∥2

𝕃2(ℝ𝑑)
= (2𝜋)−𝑑 ‖𝑓‖2

𝕃2(ℝ𝑑) .

Moreover, for 𝑓, 𝑔 ∈ 𝕃2(ℝ𝑑),

(2𝜋)𝑑 ∫
ℝ𝑑

𝑓(𝑥)𝑔(𝑥)𝑑𝑥 = ∫
ℝ𝑑

ℱ[𝑓](𝜉)ℱ[𝑔](𝜉)𝑑𝜉 (II-5.3)
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Remark II.2

Relation (II-5.3) is sometimes called the Parseval identity.

Proof. For a proof of the first part of the theorem, see [23, 19, 9]. For the part about 𝕃2

inner products, it suffices to apply the polarization identity

‖𝑥 + 𝑦‖2 + ‖𝑥 − 𝑦‖2 = 2‖𝑥‖2 + 2‖𝑦‖2

to 𝑓 and 𝑔 in order to obtain

(2𝜋)𝑑Re (∫
ℝ𝑑

𝑓(𝑥)𝑔(𝑥)𝑑𝑥) = Re (∫
ℝ𝑑

ℱ[𝑓](𝜉)ℱ[𝑔](𝜉)𝑑𝜉) ,

and to 𝑓 and 𝑖𝑔 in order to obtain

(2𝜋)𝑑Im (∫
ℝ𝑑

𝑓(𝑥)𝑔(𝑥)𝑑𝑥) = Im (∫
ℝ𝑑

ℱ[𝑓](𝜉)ℱ[𝑔](𝜉)𝑑𝜉) .

Here, Re and Im denote respectively the real and imaginary parts.

Moreover, [9] gives the following proposition:

Proposition II.1

Let 𝜙, 𝜓 ∈ 𝕃2(ℝ𝑑). The Fourier transform ℱ defined by (II-5.1) enjoys the following
properties:

1. ∫
ℝ𝑑

̂𝜙𝜓 = ∫
ℝ𝑑 𝜙𝜓;

2. ℱ(𝜙 ∗ 𝜓) = ℱ(𝜙)ℱ(𝜓);

3. (2𝜋)𝑑ℱ(𝜙𝜓) = ℱ(𝜙) ∗ ℱ(𝜓).

II-5.2 Discrete Fourier transform (DFT)

The discrete Fourier transform (DFT) of a sequence {𝑥𝑛}𝑁−1
𝑛=0 of 𝑁 complex numbers

is given by

DFT [{𝑥𝑛}𝑁−1
𝑛=0 ] (𝑘) ∶=

𝑁−1
∑
𝑛=0

𝑥𝑛𝑒−2𝑖𝜋 𝑘
𝑁 𝑛.

The inverse Discrete Fourier transform (IDFT) of a sequence {𝑋𝑘}𝑁−1
𝑘=0 of 𝑁 complex
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numbers is given by

IDFT [{𝑋𝑘}𝑁−1
𝑘=0 ] (𝑛) ∶= 1

𝑁

𝑁−1
∑
𝑘=0

𝑋𝑘𝑒2𝑖𝜋 𝑛
𝑁 𝑘.

Note that the DFT of a sequence {𝑥𝑛}𝑁−1
𝑛=0 can be represented via a matrix-vector

product, with the matrix W ∈ 𝑀𝑁(ℂ) being defined component-wise by

W𝑘,𝑛 ∶= 𝑒−2𝑖𝜋 𝑘
𝑁 𝑛

and the vector being naturally

𝑥 ∶=
⎛⎜⎜⎜
⎝

𝑥0

⋮
𝑥𝑁−1

⎞⎟⎟⎟
⎠

.

Then,
DFT [{𝑥𝑛}𝑁−1

𝑛=0 ] (𝑘) = (𝑊𝑥)𝑘 .

We refer to [7] for more details.

II-5.3 Link between the continuous and discrete Fourier
transforms

Let us give some relations between the continuous and discrete Fourier transforms.
Because of the conventions used, the relations make more sense when dealing with their
inverses. This will simply allow us to get rid of some normalization constant.

We consider the one-dimensional framework for simplicity, but all the relations can be
extended to an arbitrary dimension 𝑑 ≥ 1.

Let 𝑓 ∈ 𝕃2(ℝ), and consider a uniform discretization {𝜉𝑘 ∶= 𝑘
𝑁+1 , 𝑘 = 0, … , 𝑁} of

the interval [0, 1], composed of 𝑁 + 1 points. We assume 𝑁 is odd for simplicity.

The continuous inverse Fourier transform of 𝑓 is given by

ℱ−1[𝑓](𝑥) = 1
2𝜋

∫
ℝ

𝑓(𝜉)𝑒𝑖𝑥𝜉𝑑𝜉

If we assume 𝑓 to be negligible outside [−1/2, 1/2], we can consider ̃𝑓 the periodic extension
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of 𝑓|[−𝜋,𝜋] on ℝ and get:

ℱ−1[𝑓](𝑥) ≈ 1
2𝜋

∫
1/2

−1/2
𝑓(𝜉)𝑒𝑖𝑥𝜉𝑑𝜉

= 1
2𝜋

∫
1/2

0
𝑓(𝜉)𝑒𝑖𝑥𝜉𝑑𝜉 + 1

2𝜋
∫

0

−1/2

̃𝑓(2𝜋 + 𝜉)𝑒𝑖𝑥𝜉𝑑𝜉

= 1
2𝜋

∫
1/2

0
𝑓(𝜉)𝑒𝑖𝑥𝜉𝑑𝜉 + 1

2𝜋
∫

1

1/2

̃𝑓(𝜉)𝑒𝑖𝑥(𝜉−1)𝑑𝜉.

For 𝑛 ∈ ℕ,

ℱ−1[𝑓](2𝜋𝑛) ≈ 1
2𝜋

∫
1

0

̃𝑓(𝜉)𝑒2𝑖𝜋𝑛𝜉𝑑𝜉

≈ 1
2𝜋(𝑁 + 1)

𝑁
∑
𝑘=0

̃𝑓(𝜉𝑘) exp(2𝑖𝜋𝑛𝜉𝑘)

≈ 1
2𝜋(𝑁 + 1)

𝑁
∑
𝑘=0

̃𝑓(𝜉𝑘) exp (2𝑖𝜋𝑛 𝑘
𝑁 + 1

) . (II-5.4)

Let us now compute the IDFT of the sequence { ̃𝑓(𝜉𝑘)}𝑁
𝑘=0:

IDFT [{ ̃𝑓(𝜉𝑘)}𝑁
𝑘=0] (𝑛) = 1

𝑁 + 1

𝑁
∑
𝑘=0

𝑓(𝜉𝑘) exp (2𝑖𝜋𝑛 𝑘
𝑁 + 1

) . (II-5.5)

By comparing equations (II-5.4) and (II-5.5), we get that

IDFT [{ ̃𝑓(𝜉𝑘)}𝑁
𝑘=0] (𝑛) ≈ 2𝜋ℱ−1[𝑓] (2𝜋𝑛) . (II-5.6)

Letting 𝜉𝑘 = 𝑘
𝑁+1 for 𝑘 ∈ ℕ, we obtain

IDFT [{𝑓(𝜉𝑘)}
𝑁−1

2
𝑘=− 𝑁+1

2
] (𝑛) ≈ 2𝜋ℱ−1[𝑓] (2𝜋𝑛) . (II-5.7)

This means that, for a periodic function 𝑓, the (inverse) Discrete Fourier transform
converges to the (inverse) Continuous Fourier transform as 𝑁 → ∞.

II-5.3.1 Nonuniform discretization

There exist some occasions where the location of the points used for the discretization
of the integral (II.1) are imposed and cannot be chosen evenly spaced. In this case, the
FFT is not readily applicable, but some procedure were developped in order to adapt
the FFT. The main idea consists in performing a Fourier interpolation of the nonuniform
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data, in order obtain approximate values at some uniform points, and then to apply the
FFT to the uniform grid.

See [12] for the first detailed analysis of the Non-Uniform FFT, and [4, 3] for some
improvements.

II-5.4 Fast Fourier Transform (FFT)

In order to compute the coefficients of the DFT, an efficient algorithm has been found.
Quite surprisingly, the algorithm was already known and used by Gauss [15] but gained
popularity primarily during the last sixty years.

The Fast Fourier Transform is one of the most important algorithms of the XXth cen-
tury [10]. It is based on a Divide-and-Conquer approach in order to reduce the complexity
of computing Fourier coefficients of a length-𝑁 signal, from 𝒪(𝑁2) to 𝒪(𝑁 log 𝑁). Even
more impressive, the memory cost is minimal.

It was first introduced in its modern form by Cooley and Tukey in [11], and they
heavily used the fact that 𝑁 is a composite number. It is most efficient when 𝑁 = 2𝑚 for
some 𝑚 ∈ ℕ. More modern formulations of the FFT algorithm allow prime 𝑁 as well.

We give a quick presentation of the algorithm behind the FFT, following the presen-
tation from [11].

The problem at hand is the computation of the complex Fourier coefficients 𝑋 of a
length-𝑁 complex input 𝐴. They are given by

𝑋(𝑗) =
𝑁−1
∑
𝑘=0

𝐴(𝑘)𝜔𝑗𝑘, 𝑗 ∈ [[0, 𝑁 − 1]] (II-5.8)

where 𝜔 is the principal 𝑁-th root of unity:

𝜔 = 𝑒2𝜋𝑖/𝑁.

A straightforward computation of (II-5.8) would require 𝑁 operations for each 𝑗, thus 𝑁2

operations in total. By “operation” it is meant a complex multiplication followed by a
complex addition.

Now suppose that 𝑁 is composite, i.e. 𝑁 = 𝑟1𝑟2. We can write

𝑗 = 𝑗2𝑟1 + 𝑗1, 𝑗1 ∈ [[0, 𝑟1 − 1]], 𝑗2 ∈ [[0, 𝑟2 − 1]]

𝑘 = 𝑘1𝑟2 + 𝑘2, 𝑘1 ∈ [[0, 𝑟1 − 1]], 𝑘2 ∈ [[0, 𝑟2 − 1]],
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and then (II-5.8) becomes

𝑋(𝑗2, 𝑗1) =
𝑟1−1

∑
𝑘1=0

𝑟2−1

∑
𝑘2=0

𝐴(𝑘2, 𝑘1)𝜔𝑗𝑘1𝑟2𝜔𝑗𝑘2 .

Note the slight abuse of notation where 𝐴 and 𝑋 are now indexed by two indices:

𝐴(𝑘2, 𝑘1) = 𝐴(𝑘1𝑟2 + 𝑘2) and 𝑋(𝑗2, 𝑗1) = 𝑋(𝑗2𝑟1 + 𝑗1).

Moreover, 𝜔𝑗𝑘1𝑟2 = 𝜔𝑗1𝑘1𝑟2 since

𝑗𝑘1𝑟2 = 𝑗2𝑘1𝑟1𝑟2 + 𝑗1𝑘1𝑟2 = 𝑗2𝑘1𝑁 + 𝑗1𝑘1𝑟2,

and (𝜔𝑁)𝑗2𝑘1 = 1𝑗2𝑘1 = 1.
Then, we can define

𝐴1(𝑗1, 𝑘2) =
𝑟1−1

∑
𝑘1=0

𝐴(𝑘2, 𝑘1)𝜔𝑗1𝑘1𝑟2 ,

and obtain

𝑋(𝑗2, 𝑗1) =
𝑟2−1

∑
𝑘2=0

𝐴1(𝑗1, 𝑘2)𝜔(𝑗2𝑟1+𝑗1)𝑘2 .

We have 𝐴1 ∈ ℳ𝑟1,𝑟2
(ℂ), and the computation of each component of 𝐴1 requires 𝑟1

operations. This gives 𝑟2
1𝑟2 = 𝑁𝑟1 operations in total to compute 𝐴1. On the other hand,

given 𝐴1, each component of 𝑋 ∈ ℳ𝑟2,𝑟1
(ℂ) can be computed in 𝑟2 operations. Hence

𝑟2
2𝑟1 = 𝑁𝑟2 operations are required in total to compute 𝑋 from 𝐴1.

Thus, the total number of required operations is

𝑁𝑟1⏟
To compute 𝐴1

+ 𝑁𝑟2⏟
To compute 𝑋

= 𝑁(𝑟1 + 𝑟2).

One can see that, if 𝑁 = 𝑟1 ⋯ 𝑟𝑚, one can derive a similar procedure which requires
only 𝑁(𝑟1 +⋯+𝑟𝑑) operations. In this case, if 𝑟1 = ⋯ = 𝑟𝑚 =∶ 𝑟, then the total number of
operations is 𝑟𝑁 log𝑟 𝑁. This is the most interesting when 𝑟 is small, e.g. when 𝑁 = 2𝑚.
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II-6.1 Grönwall Lemma

Grönwall first stated his famous Lemma in the continuous setting in [13].

Lemma II.1: Grönwall

When, for 𝑥0 ≤ 𝑥 ≤ 𝑥0 + ℎ, the continuous function 𝑧 = 𝑧(𝑥) satisfies the inequality

0 ≤ 𝑧(𝑥) ≤ ∫
𝑥

𝑥0

(𝑀𝑧(𝑦) + 𝐴)𝑑𝑦

where the constants 𝑀 and 𝐴 are nonnegative, then

0 ≤ 𝑧(𝑥) ≤ 𝐴ℎ𝑒𝑀ℎ, 𝑥0 ≤ 𝑥 ≤ 𝑥0 + ℎ.

Proof. We start by writing
𝑧(𝑥) = 𝑒𝑀(𝑥−𝑥0)𝜁(𝑥),

and let the maximum of 𝜁 on [𝑥0, 𝑥0 + ℎ] occur at 𝑥1. When 𝑥 = 𝑥1, we have

0 ≤ 𝑧(𝑥1) = 𝑒𝑀(𝑥1−𝑥0)𝜁(𝑥1) ≤ ∫
𝑥1

𝑥0

(𝑀𝑒𝑀(𝑦−𝑥0)𝜁(𝑦) + 𝐴) 𝑑𝑦

≤ 𝜁(𝑥1) ∫
𝑥1

𝑥0

𝑀𝑒𝑀(𝑦−𝑥0)𝑑𝑦 + ∫
𝑥1

𝑥0

𝐴𝑑𝑦

≤ 𝜁(𝑥1) (𝑒𝑀(𝑥1−𝑥0) − 1) + 𝐴(𝑥1 − 𝑥0).

By substracting 𝜁(𝑥1) (𝑒𝑀(𝑥1−𝑥0) − 1) from both sides, one obtains

𝜁(𝑥1) ≤ 𝐴ℎ.

Recall that 𝜁 is a nonnegative function (since 𝑧 is nonnegative), hence

0 ≤ 𝜁(𝑥1) ≤ 𝐴ℎ.
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Finally, for 𝑥 ∈ [𝑥0, 𝑥0 + ℎ],

0 ≤ 𝑧(𝑥) ≤ max
𝑥∈[𝑥0,𝑥0+ℎ]

(𝑒𝑀(𝑥−𝑥0)𝜁(𝑥)) ≤ 𝑒𝑀ℎ𝜁(𝑥1) ≤ 𝐴ℎ𝑒𝑀ℎ.

II-6.2 Cauchy-Lipschitz theorem

The following theorem is fundamental in the analysis of differential equations. The
statement and his proof given below come from [20, p. 172]:

Theorem II.2: Cauchy-Lipschitz

Let 𝑈 ⊂ ℝ×ℝ𝑚 an open set, and 𝑓 ∈ 𝐶1(𝑈; ℝ𝑚). Then, for all initial data (𝑡0, 𝑥) ∈ 𝑈,
the differential system

𝑦′ = 𝑓(𝑡, 𝑦), 𝑦(𝑡0) = 𝑥 (II-6.1)

has an unique maximal solution.

Proof. If 𝑦 is solution to (II-6.1), by integrating we get

𝑦(𝑡) = 𝑥 + ∫
𝑡

𝑡0

𝑓(𝑠, 𝑦(𝑠))𝑑𝑠, ∀𝑡.

On the other hand, if 𝑦 solves the above integral equation and 𝑓 is continuous, then 𝑦 is
differentiable and solves (II-6.1).

Suppose the time interval 𝐼 is a compact interval of length 𝑙 > 0 , then 𝑦 ∶ 𝐼 → ℝ
is bounded, thus 𝑓(𝐼, 𝑦(𝐼)) ⊂ 𝐵(0, 𝑀) for some 𝑀 > 0 large enough. We also have
𝑓 ′(𝐼, 𝑦(𝐼)) ⊂ 𝐵(0, 𝑘) for some 𝑘 > 0 large enough.

Let {𝑦𝑛(𝑡)}𝑛∈ℕ the sequence of functions built by solving the following differential
problems:

𝑦′
𝑛(𝑡) = 𝑓(𝑡, 𝑦𝑛−1(𝑡)), 𝑦𝑛(𝑡0) = 𝑥,

with 𝑦0 a constant function equal to 𝑥. For 𝑡 ∈ 𝐼, we have

‖𝑦1(𝑡) − 𝑦0(𝑡)‖ ≤ ∣∫
𝑡

𝑡0

‖𝑓(𝑠, 𝑥)‖𝑑𝑠∣ ≤ 𝑀|𝑡 − 𝑡0|.
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More generally, we have

‖𝑦𝑛(𝑡) − 𝑦𝑛−1(𝑡)‖ ≤ ∣∫
𝑡

𝑡0

‖𝑓(𝑠, 𝑦𝑛−1(𝑠)) − 𝑓(𝑠, 𝑦𝑛−2(𝑠))‖𝑑𝑠∣

≤ 𝑘 ∣∫
𝑡

𝑡0

‖𝑦𝑛−1(𝑠) − 𝑦𝑛−2(𝑠)‖𝑑𝑠∣ ,

hence by induction,

‖𝑦𝑛(𝑡) − 𝑦𝑛−1(𝑡)‖ ≤ 𝑀𝑘𝑛−1 |𝑡 − 𝑡0|𝑛

𝑛!
≤ 𝑀

𝑘
(𝑘𝑙)𝑛

𝑛!
.

Thus,
∑
𝑛≥1

‖𝑦𝑛(𝑡) − 𝑦𝑛−1(𝑡)‖ ≤ ∑
𝑛≥1

𝑀
𝑘

(𝑘𝑙)𝑛

𝑛!
= 𝑀

𝑘
(𝑒𝑘𝑙 − 1) ,

i.e. the series ∑𝑛(𝑦𝑛(𝑡)−𝑦𝑛−1(𝑡)) converges normally for all 𝑡 ∈ 𝐼. This implies the uniform
convergence on 𝐼 of the sequence of partial sums {∑𝑛≥1(𝑦𝑛 − 𝑦𝑛−1) = 𝑦𝑛 − 𝑥}

𝑛≥1
. We

denote 𝑦 ∶= lim𝑛→∞ 𝑦𝑛. Using the fact that 𝑓 ′ is continuous, we also have 𝑓(𝑠, 𝑦𝑛(𝑠)) →
𝑓(𝑠, 𝑦(𝑠)). Hence, owing to the dominated convergence theorem,

𝑦(𝑡) = lim
𝑛→∞

𝑦𝑛(𝑡) = lim
𝑛→∞

(𝑥 + ∫
𝑡

𝑡0

𝑓(𝑠, 𝑦𝑛(𝑠))𝑑𝑠)

= 𝑥 + lim
𝑛→∞

∫
𝑡

𝑡0

𝑓(𝑠, 𝑦𝑛(𝑠))𝑑𝑠 = 𝑥 + ∫
𝑡

𝑡0

lim
𝑛→∞

𝑓(𝑠, 𝑦𝑛(𝑠))𝑑𝑠

= 𝑥 + ∫
𝑡

𝑡0

𝑓(𝑠, 𝑦(𝑠))𝑑𝑠.

We deduce that 𝑦 solves (II-6.1).

Let us now turn to the uniqueness: let 𝑦, 𝑧 two solutions of (II-6.1), then

𝑦(𝑡) − 𝑧(𝑡) = ∫
𝑡

𝑡0

[𝑓(𝑠, 𝑦(𝑠)) − 𝑓(𝑠, 𝑧(𝑠))] 𝑑𝑠,

hence

‖𝑦(𝑡) − 𝑧(𝑡)‖ ≤ 𝑘 ∣∫
𝑡

𝑡0

‖𝑦(𝑠) − 𝑧(𝑠)‖𝑑𝑠∣ ,

and by induction

‖𝑦(𝑡) − 𝑧(𝑡)‖ ≤ 𝐶𝑘𝑛 |𝑡 − 𝑡0|𝑛

𝑛!
,

where 𝐶 ∶= max𝑡∈𝐼 ‖𝑦(𝑡) − 𝑧(𝑡)‖. By letting 𝑛 → ∞, we obtain 𝑦(𝑡) = 𝑧(𝑡) for all 𝑡 ∈ 𝐼.
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Finally, let us extend the results to an arbitrary interval 𝐼. It can be written 𝐼 = ∪𝑗𝐼𝑗,
with increasing compact intervals 𝐼0 ⊂ 𝐼1 ⊂ 𝐼2 ⊂ …, all containing the initial point 𝑡0.
We denote 𝑦𝑗 the unique solution obtained on the compact time interval 𝐼𝑗.

If 𝑦(𝑡) is a solution of (II-6.1) on 𝐼, then 𝑦 and 𝑦𝑗 must coincide on 𝐼𝑗, according to
the uniqueness on 𝐼𝑗. We define 𝑦(𝑡) ∶= 𝑦𝑗(𝑡) for all 𝑗 such that 𝑡 ∈ 𝐼𝑗, it is again unique
and solution to (II-6.1).

The function 𝑦 is then the unique solution on the arbitrary interval 𝐼.
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Plasma is one of the four fundamental states of matter. Even though it is the main
component of “ordinary matter” in our universe 1, it has been studied only recently. The
first account of plasma dates back from 1879 and is due to Crookes [51]. It was then
called “radiant matter”, a term coined earlier by Faraday in 1816 during one of his thought
experiments. It is only in 1928 that Langmuir [104] called this state of matter plasma. The
term was used as an analogy with blood plasma, as explained by Tonks, a collaborator of
Langmuir in 1928 [136]. A simple description of plasma is given in [42]:

“
”Francis F. Chen (1974)

A plasma is a quasineutral gas of charged and neutral particles
which exhibits collective behavior.

Nowadays, plasmas are used daily, for instance in neon tubes. In the near future,
it is also expected that plasma can be used to produce energy efficiently, via controlled
fusion. Controlled fusion uses either inertial or magnetic confinement. The latter approach
consists in confining low-density plasma using a magnetic field, but for a rather long
time. Currently, the most promising configuration for a magnetic confinement device is
the tokamak – a doughnut-shaped vacuum chamber, see an illustration on Figure III-1.1
– which was first developed by Soviet research in the late 1960s. Due to its promising
properties, it is natural that the ITER project 2 also uses it.

1. “It has often been said that 99% of the matter in the universe is in the plasma state [...]. This
estimate may not be very accurate, but it is certainly a reasonable one”, Francis Chen (1974, in [42]).

2. More details are available on the dedicated website https://www.iter.org/.
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Figure III-1.1 – Cut-view of a tokamak, credits to https://www.iter.org/.

“

”Extract from https://www.iter.org/mach/tokamak

The tokamak is an experimental machine designed to harness the
energy of fusion. Inside a tokamak, the energy produced through
the fusion of atoms is absorbed as heat in the walls of the vessel.
Just like a conventional power plant, a fusion power plant will use
this heat to produce steam and then electricity by way of turbines
and generators. [...]
The term “tokamak” comes to us from a Russian acronym that
stands for “toroidal chamber with magnetic coils” [...] As a power-
ful electrical current is run through the vessel, the gas breaks down
electrically, becomes ionized (electrons are stripped from the nu-
clei) and forms a plasma. As the plasma particles become energized
and collide they also begin to heat up. Auxiliary heating methods
help to bring the plasma to fusion temperatures (between 150 and
300 million ∘C). Particles “energized” to such a degree can over-
come their natural electromagnetic repulsion on collision to fuse,
releasing huge amounts of energy.

The long-term goal of ITER is to prove that producing energy through controlled
fusion is possible.

It is obvious that the ITER project could not have seen the light of day if it were
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not for decades full of countless works about plasma physics, time-consuming numerical
simulations, and numerous mathematical theorems.

The theoretical study of plasma gained serious interest after the work of L. D. Landau
[101], who studied the vibrations of a plasma under the influence of an electric field. This
work gave the now famous name of Landau damping, which characterizes the damping
and oscillations in plasma for certain initial conditions.

It is common in mathematics that, when studying physics problems, some simplifying
assumptions are made in order to make the mathematics easier but still retain most of
the physical meaning. Let us explain the framework used for the mathematical study of
plasma physics, also described in [73].

From a physical point of view, we can represent any physical system using enough
atoms and/or molecules. In the following, we will call these quantities “particles”. Math-
ematically, it is not convenient to deal with too many particles, and a discrete model
may be cumbersome. This is why the kinetic theory has been developed: to give a “fluid”
representation of matter which is actually composed of particles. Here, the term “fluid”
means a continuous setting, and it is not understood as a physical fluid (composed of
molecules). Kinetic theory gives a statistical approach of the problem at hand. Instead
of studying exactly where each particle is and how it evolves with time, we deal with a
continuous function 𝑓 = 𝑓(𝑡, 𝑥, 𝑣). This function depends on time 𝑡 ≥ 0, position 𝑥 ∈ ℝ3

and velocity 𝑣 ∈ ℝ3, and it is usually called the particle density, or distribution function.
The probable number of particles in an infinitesimal volume of phase-space of size 𝑑𝑥×𝑑𝑣
and centered at (𝑥, 𝑣) at time 𝑡 is given by 𝑓(𝑡, 𝑥, 𝑣)𝑑𝑥𝑑𝑣.

Lev D. Landau (1908-
1968), in 1962. Credit
to nobelprize.org.

The three-dimensional spaces in position and velocity is due to
the physical nature of the problems: we live in a three-dimensional

world[Reference needed]
🤡. Unfortunately, high-dimensional problems

are often harder to deal with than low-dimensional problems. This
is why one of the first simplifying assumption is generally to lower
the dimension of space and/or velocity. Note that there are some
physical situations where this reduction of dimension makes sense.
The simplest framework consists in considering 𝑥 ∈ ℝ and 𝑣 ∈ ℝ.
A second simplifying assumption consists in restricting the position
to “simple” domain, like the torus. In the following, we will treat
the (𝑑𝑥 +𝑑𝑣)-dimensional case, that is 𝑣 ∈ ℝ𝑑𝑣 , with either 𝑥 ∈ ℝ𝑑𝑥

or 𝑥 ∈ 𝕋𝑑𝑥 . Here, 𝕋𝑑𝑥 denotes the 𝑑𝑥-dimensional torus, defined by
𝕋𝑑𝑥 ∶= (ℝ/(2𝜋ℤ))𝑑𝑥 . When the equality 𝑑𝑥 = 𝑑𝑣 holds, we will
define 𝑑 ∶= 𝑑𝑥 = 𝑑𝑣 to make the notations a little lighter.
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Vlasov MHD
Time scale Rapid Slow
Temperature High Low
Density Low High
Collisions Ignored Very Important

Table III-1.1 – Main properties differences between the Vlasov theory and MHD, for
completely ionized gases.

The next step consists in developing a theory to describe the completely ionized gases
we are considering. Fortunately, there are essentially two distinct theories: the Vlasov
theory, and MHD (Magnetohydrodynamics). Their main differences are summarized in
Table III-1.1. We will focus in the following on the Vlasov theory, which concerns rapid
time scales, high temperatures, low densities, and does not deal with collisions.

Anatoly Vlasov
(1908–1975). Credit to
ru.wikipedia.org.

One of the main components of the Vlasov theory is the Vlasov
equation, we detail now briefly how it is obtained. The Liouville
equation [73, p. 2] is:

𝒟𝑓
𝒟𝑡

= “material derivative” =
rate of change due

to collisions.

We neglect collisions, thus

𝒟𝑓
𝒟𝑡

= 𝜕𝑡𝑓 + 𝑑𝑥
𝑑𝑡

⋅ ∇𝑥𝑓 + 𝑑𝑣
𝑑𝑡

⋅ ∇𝑣𝑓 = 0. (III-1.1)

Newton’s equations of motion are:

⎧{
⎨{⎩

𝑑𝑥
𝑑𝑡

= 𝑣,

𝑑𝑣
𝑑𝑡

= 𝐹,

where 𝐹(𝑡, 𝑥, 𝑣) is a force applied to the physical system (i.e. our
plasma) at time 𝑡 at position 𝑥 and velocity 𝑣.

Remark III.1

It may be easier conceptually to think of the particle distribution as a discrete set
of particles instead of a continuum. In this case, one would consider 𝑁 particles and
apply Newton’s equation of motion to each particle.
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The theory of electromagnetism tells us that the force 𝐹 to use in this context is the
Lorentz force, given by:

𝐹(𝑡, 𝑥, 𝑣) = 𝑞 (𝐸(𝑡, 𝑥, 𝑣) + 𝑣
𝑐

× 𝐵(𝑡, 𝑥, 𝑣)) , (III-1.2)

where 𝑐 denotes the speed of light, and 𝑞 is the electrical charge of the particle. We can
compute the self-induced electromagnetic fields 𝐸 and 𝐵 within the plasma by using the
system of Maxwell equations (see [73, 100], and [108] for the original paper where the
equations are derived by Maxwell):

⎧{{{{
⎨{{{{⎩

𝜕𝐸
𝜕𝑡

− ∇ × 𝐵 = −𝑗,

𝜕𝐵
𝜕𝑡

+ ∇ × 𝐸 = 0,

∇ ⋅ 𝐸 = 𝜌,

∇ ⋅ 𝐵 = 0,

(III-1.3a)

(III-1.3b)

(III-1.3c)

(III-1.3d)

where
𝑗 ∶= ∫

ℝ𝑑

𝑓𝑣𝑑𝑣 and 𝜌 ∶= ∫
ℝ𝑑

𝑓𝑑𝑣 + 𝜌0, (III-1.4)

and 𝜌0 is some constant to be defined later.

By plugging the Lorentz force (III-1.2) into (III-1.1), one gets the Vlasov equation,
which describes the evolution of a single species of charged particles under self-consistent
fields in the absence of collisions:

𝜕𝑡𝑓 + 𝑣 ⋅ ∇𝑥𝑓 + 𝑞 (𝐸 + 𝑣 × 𝐵) ⋅ ∇𝑣𝑓 = 0, (III-1.5a)

𝑓(𝑡 = 0) = 𝑓0, (III-1.5b)

where 𝑓0 is a given initial particle distribution at time 𝑡 = 0.

The system of equations (III-1.3)-(III-1.5) is called the Vlasov-Maxwell system, and
was first introduced by Anatoly Vlasov in 1938, in a Russian journal 3. The English trans-
lation of one his works where the equation is derived is given in [139].

It is also possible to include external electric forces in 𝐸 and external magnetic forces
in 𝐵 in the Vlasov-Maxwell system.

3. It appears now that the earliest issues of this journal are nowhere to be found on the Internet (at
least for a non-Russian speaking person), thus we can only date the results based on other works who
reference Vlasov’s work.
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Remark III.2

The Vlasov equation can also be derived by taking the limit as 𝑁 → ∞ of a system
of 𝑁 particles with pair interactions, see for example [31, 133, 127]. This explains
why Newton’s equations of motion can still be used when the particle distribution is
continuous instead of discrete.

The Vlasov equation could be formulated as well with two (or more!) distributions
𝑓𝑒 and 𝑓𝑖, one corresponding to electrons and the other one to positive ions. However,
the positive ions are much heavier than electrons, thus move much slower, and a common
assumption is generally that they don’t move. This allows to consider only one species of
particles in the Vlasov equation, as is the case in Equation (III-1.5) .

The particle distribution 𝑓 changes over time, hence we need its state at initial time.
We impose the following: 𝑓(0, 𝑥, 𝑣) = 𝑓0(𝑥, 𝑣), where 𝑓0 is called the initial condition.

When the magnetic part is neglected, only the electric field remains and the Maxwell
equations yield a Poisson equation:

Δ𝑥Φ(𝑡, 𝑥) = 𝜌(𝑡, 𝑥), 𝐸 = ∇𝑥Φ, (III-1.6)

where Φ is a scalar potential and 𝜌 is given by (III-1.4). The system composed of equations
(III-1.5)-(III-1.6) is called the Vlasov-Poisson system, and writes

𝜕𝑡𝑓 + 𝑣 ⋅ ∇𝑥𝑓 + 𝑞𝐸 ⋅ ∇𝑣𝑓 = 0,

𝐸 = ∇𝑥Φ,

Δ𝑥Φ(𝑡, 𝑥) = 𝜌(𝑡, 𝑥),

𝑓(𝑡 = 0) = 𝑓0.

(III-1.7)

Remark III.3

The Vlasov-Poisson system can also be used to study stellar dynamics. In fact, it was
used by Jeans as early as 1915 [94]. In this case, the Vlasov equation with dimensionless
variables is

𝜕𝑡𝑓 + 𝑣 ⋅ ∇𝑥𝑓 − 𝐸 ⋅ ∇𝑣𝑓 = 0,

with 𝑓(𝑡 = 0) = 𝑓0. Note the change of sign in front of the field 𝐸, compared to
(III-1.7) for plasma physics. There is also no constant 𝑞 here, but this only because
we consider dimensionless variables. We refer the reader to [69, 127] for more details
about the Vlasov-Poisson system for stellar dynamics.
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The rest of this Part is organized as follows. In Chapter III-2 we give some useful
results about the Vlasov-Poisson system. Chapter III-3 is dedicated to giving an overview
of the literature concerning the Vlasov-Poisson equation, beginning with existence and
uniqueness results, and then reviewing some numerical methods. The advantages and
issues observed with numerical methods are discussed. Finally, in Chapter III-4, a grid-
free particle method will be presented and analyzed. It was first described in [13], and its
convergence proved in [105] constitutes the main contribution to this part of the thesis.
The convergence result is Theorem III.2, and it is proven in Chapter III-5.
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From now on, we consider dimensionless variables, which means that the one-species
Vlasov equation (III-1.5) now writes

𝜕𝑡𝑓 + 𝑣 ⋅ ∇𝑥𝑓 + (𝐸 + 𝑣 × 𝐵) ⋅ ∇𝑣𝑓 = 0. (III-2.1)

Moreover, we will focus on the periodic Vlasov-Poisson system, so that we are left with
studying the following system of equations:

⎧{{
⎨{{⎩

𝜕𝑡𝑓(𝑡, 𝑥, 𝑣) + 𝑣 ⋅ ∇𝑥𝑓(𝑡, 𝑥, 𝑣) + 𝐸(𝑡, 𝑥) ⋅ ∇𝑣𝑓(𝑡, 𝑥, 𝑣) = 0,

𝐸(𝑡, 𝑥) = ∇𝑥Φ(𝑡, 𝑥), Δ𝑥Φ(𝑡, 𝑥) = 𝜌(𝑡, 𝑥, ),

𝑓(0, 𝑥, 𝑣) = 𝑓0(𝑥, 𝑣),

(III-2.2a)

(III-2.2b)

(III-2.2c)

where 𝑥 ∈ 𝕋𝑑𝑥
𝐿 and 𝕋𝑑𝑥

𝐿 ∶= ℝ/(𝐿1ℤ) × ⋯ × ℝ/(𝐿𝑑𝑥
ℤ) for 𝐿𝑖 > 0, 𝑖 = 1, … , 𝑑𝑥. We let

𝑣 ∈ ℝ𝑑𝑣 . The time variable is 𝑡 ≥ 0, and the charge density 𝜌 is defined by:

𝜌(𝑡, 𝑥) ∶= ∫
ℝ𝑑𝑣

(𝑓(𝑡, 𝑥, 𝑣) − 1
|𝕋𝑑𝑥

𝐿 |
∫

𝕋𝑑𝑥
𝐿

𝑓(𝑡, 𝑦, 𝑣)𝑑𝑦) 𝑑𝑣. (III-2.3)

Usually, 𝑑𝑥, 𝑑𝑣 ∈ {1, 2, 3}. In the following, we will simplify the presentation by letting
𝑑 ∶= 𝑑𝑥 = 𝑑𝑣, but most of the work is applicable to the case 𝑑𝑥 ≠ 𝑑𝑣.

Remark III.4

In Equation (III-2.3), the quantity 𝜌0 that was present in (III-1.4) has been chosen so
that ∫ 𝜌(𝑥)𝑑𝑥 = 0. This condition is often called the “neutral background” condition.
Physically, it means that we suppose there are as many positive particles as negative
particles. In other words, the plasma is electrically neutral (meaning neither positive
nor negative) and this makes the Poisson equation well-defined, for smooth 𝑓. When
the one-species Vlasov equation is considered in plasma, it is generally to model the
behavior of electrons. The fact that the plasma is considered electrically neutral means
that there is a positively ionized background, namely the protons, and the substracted
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constant value represents the charge of this background, assumed to be uniform.

The first thing to note about the Vlasov equation (III-2.2a) is that it is a transport
equation: it can be written

𝜕𝑡𝑓(𝑡, 𝑈) + (
𝑣

𝐸(𝑡, 𝑥)
) ⋅ ∇𝑈𝑓(𝑡, 𝑈) = 0, (III-2.4)

by letting 𝑈 ∶= (𝑥, 𝑣).

Definition – Lemma III.1: Characteristics of a transport equation

Consider the following transport equation

𝜕𝑡𝑓(𝑡, 𝑢) + 𝑎(𝑡, 𝑢) ⋅ ∇𝑢𝑓(𝑡, 𝑢) = 0, 𝑡 ∈ ℝ+, 𝑢 ∈ ℝ𝑑 (III-2.5)

where 𝑎 ∶ ℝ+×ℝ𝑑 → ℝ𝑑, and with 𝑓(𝑡 = 0) = 𝑓0. We assume that 𝑎 is 𝐿-Lipschitz with
respect to its second variable, and |𝑎| ≤ 𝐴, 𝐴 ∈ ℝ+. Then the following differential
system

𝑈 ′(𝑡) = 𝑎(𝑡, 𝑈(𝑡)), 𝑈(0) = 𝑢0 (III-2.6)

is well-defined and has a unique solution 𝑈(𝑡) such that 𝑈(0) = 𝑢0. The mapping
𝑡 ↦ 𝑈(𝑡) is called the characteristics of the transport equation (III-2.5). We shall
denote it 𝑈(𝑡; 0, 𝑢0) to emphasize the fact that 𝑈(0) = 𝑢0. Moreover, there is a time-
reversal property:

𝑈(𝑠; 𝑡, 𝑣) = 𝑤 ⟺ 𝑈(𝑡; 𝑠, 𝑤) = 𝑣. (III-2.7)

The solution to (III-2.5) is given by

𝑓(𝑡, 𝑢) = 𝑓0(𝑈(0; 𝑡, 𝑢)). (III-2.8)

Finally, if div𝑢(𝑎) = 0, then the mapping

𝑤 ↦ 𝑈(𝑠; 𝑡, 𝑤) (III-2.9)

has unit Jacobian.

Proof. The first claim is simply an application of Theorem II.2 – Cauchy-Lipschitz.
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For the time-reversal property, by uniqueness we get

𝑈(𝑡; 𝑠, 𝑈(𝑠; 𝑟, 𝑣)) = 𝑈(𝑡; 𝑟, 𝑣).

Thus, by taking 𝑟 = 𝑡, we get

𝑈(𝑡; 𝑠, ⋅)−1 = 𝑈(𝑠; 𝑡, ⋅),

which shows (III-2.7).
The characteristics (III-2.6) are now well-defined. Let us now consider the function 𝑓

defined by
𝑓(𝑡, 𝑢) ∶= 𝑓0(𝑈(0; 𝑡, 𝑢)) ⟺ 𝑓(𝑡, 𝑈(𝑡; 0, 𝑢)) = 𝑓0(𝑢),

and differentiate it with respect to time 𝑡:

𝑑
𝑑𝑡

𝑓(𝑡, 𝑈(𝑡; 0, 𝑢)) = 𝑑
𝑑𝑡

𝑓0(𝑢) = 0

⟹ 𝜕𝑡𝑓(𝑡, 𝑈(𝑡; 0, 𝑢)) + 𝑑
𝑑𝑡

𝑈(𝑡; 0, 𝑢) ⋅ ∇𝑈𝑓(𝑡, 𝑈(𝑡; 0, 𝑢)) = 0

⟹ 𝜕𝑡𝑓(𝑡, 𝑈(𝑡; 0, 𝑢)) + 𝑎(𝑡, 𝑈(𝑡; 0, 𝑢)) ⋅ ∇𝑈𝑓(𝑡, 𝑈(𝑡; 0, 𝑢)) = 0.

In other words,
𝑓(𝑡, 𝑈(𝑡; 0, 𝑢)) = 𝑓(0, 𝑈(0; 0, 𝑢)) = 𝑓0(𝑢)

is a solution to the transport equation (III-2.5).

For the unit Jacobian property, we compute:

𝑑
𝑑𝑡

det 𝜕𝑈
𝜕𝑢

(𝑡; 𝑠, 𝑢) = 𝑑
𝑑𝑡

det (𝜕1𝑈(𝑡; 𝑠, 𝑢) 𝜕2𝑈(𝑡; 𝑠, 𝑢) … 𝜕𝑑𝑈(𝑡; 𝑠, 𝑢)) .

Since the determinant of a matrix is a multilinear mapping of the columns of the matrix,
we get

𝑑
𝑑𝑡

det 𝜕𝑈
𝜕𝑢

(𝑡; 𝑠, 𝑢) = div𝑢 𝑎(𝑡; 𝑠, 𝑢)⏟⏟⏟⏟⏟
=0

det 𝜕𝑈
𝜕𝑢

= 0.

Finally, by noting that det 𝜕𝑈
𝜕𝑢 (𝑡; 𝑠, 𝑢) = 𝐼 for 𝑡 = 𝑠, we get that the Jacobian of 𝑢 ↦

𝑈(𝑡; , 𝑠, 𝑢) is identically equal to one.

The difficulty of the Vlasov-Poisson system (III-2.2) is that, unlike the transport equa-
tion (III-2.5), the electric field 𝐸 depends on the solution. The method of characteristics
could be applied directly if the field 𝐸 was known, but additional work has to be done in
order to prove existence to solutions of the Vlasov-Poisson system (III-2.2). We refer to
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Part III, Chapter III-2 – Properties of the Vlasov-Poisson system

the existence and uniqueness results given in Section III-3 – Review of the Vlasov-Poisson
literature for more details.

Once we know that 𝑓0 satisfies some smoothness conditions, and a fortiori the electric
field 𝐸, we can apply the method of characterics and express the solution 𝑓 using (III-2.8).
A “physical” way of understanding (III-2.8) in the case of the Vlasov equation is given in
[84]:

“

”Hockney and Eastwood (1988)

If we imagine that 𝑥−𝑣 phase space is divided into a regular array
of infinitesimal cells of volume 𝑑𝜏 = 𝑑𝑥𝑑𝑣, where 𝑑𝜏 is sufficiently
small for not more than one electron to occupy it, then 𝑓(𝑥, 𝑣, 𝑡)𝑑𝜏
gives the probability that the cell at (𝑥, 𝑣) is occupied at time 𝑡.
Given that there is an electron in the cell at time 𝑡, then it follows
that there will be one in the cell at (𝑥′, 𝑣′) at time 𝑡′, where (𝑥′, 𝑣′)
are related to (𝑥, 𝑣) by the electron equations of motion

𝑥′ = 𝑥 + ∫
𝑡′

𝑡
𝑣𝑑𝑠, 𝑣′ = 𝑣 + ∫

𝑡′

𝑡
𝐸𝑑𝑡.

Pursuing this reasoning, we can show generally that

𝑓(𝑥′, 𝑣′, 𝑡′) = 𝑓(𝑥, 𝑣, 𝑡).

Let us come back to the Vlasov equation (III-2.4). Using the change of variables
𝑈 = (𝑥, 𝑣), the characteristics of the Vlasov equation (III-2.2a) are the solutions to the
following differential system:

⎧{
⎨{⎩

𝑑𝑋(𝑡; 𝑠, 𝑥, 𝑣)
𝑑𝑡

= 𝑉 (𝑡; 𝑠, 𝑥, 𝑣), 𝑋(𝑠; 𝑠, 𝑥, 𝑣) = 𝑥,

𝑑𝑉 (𝑡; 𝑠, 𝑥, 𝑣)
𝑑𝑡

= 𝐸(𝑡, 𝑋(𝑡; 𝑠, 𝑥, 𝑣)), 𝑉 (𝑠; 𝑠, 𝑥, 𝑣) = 𝑣.
(III-2.10)

The notation 𝑋(𝑡; 𝑠, 𝑥, 𝑣) (resp. 𝑉 (𝑡; 𝑠, 𝑥, 𝑣)) stands for the position (resp. velocity) com-
ponent of the flow, starting from (𝑥, 𝑣) at time 𝑠 and evaluated at time 𝑡.

The solution to the Vlasov-Poisson system then writes

𝑓(𝑡, 𝑥, 𝑣) = 𝑓0(𝑋(0; 𝑡, 𝑥, 𝑣), 𝑉 (0; 𝑡, 𝑥, 𝑣)). (III-2.11)
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III-2.1 Conserved Quantities

Just like many other physical systems, the plasma described by the Vlasov-Poisson
system possesses some conserved quantities. A “conserved quantity” is a functional 𝒜
depending on the solution 𝑓 and such that 𝑑

𝑑𝑡𝒜[𝑓](𝑡) = 0. They are also often called
invariants.

Some conserved quantities are given in the following Lemma:

Lemma III.1: Conservative quantities of the Vlasov-Poisson system (III-2.2)

Let 𝑓 be the solution to the Vlasov-Poisson system (III-2.2) under suitable smoothness
conditions on 𝑓0. Then, the 𝕃𝑝 norms,

∫
𝐷𝑥×ℝ𝑑𝑣

|𝑓(𝑡, 𝑥, 𝑣)|𝑝𝑑𝑥𝑑𝑣, 𝑝 ≥ 1,

the total energy

ℰ ∶= ∫
𝐷𝑥×ℝ𝑑𝑣

|𝑣|2𝑓(𝑡, 𝑥, 𝑣)𝑑𝑥𝑑𝑣 + ∫
ℝ𝑑

|𝐸(𝑡, 𝑥)|2𝑑𝑥

and the momentum
ℳ(𝑡) ∶= ∫

𝐷𝑥×ℝ𝑑𝑣

𝑣𝑓(𝑡, 𝑥, 𝑣)𝑑𝑥𝑑𝑣,

are constant with respect to time. We let 𝐷𝑥 denote the 𝑥-domain, either 𝐷𝑥 = ℝ𝑑𝑥

or 𝐷𝑥 = 𝕋𝑑𝑥 .

Proof. For the 𝕃𝑝 norms, we have

𝑝𝑓𝑝−1𝜕𝑡𝑓 + 𝑝𝑓𝑝−1𝑣 ⋅ ∇𝑥𝑓 + 𝑝𝑓𝑝−1𝐸 ⋅ ∇𝑣𝑓 = 0

⟹ 𝜕𝑡(𝑓𝑝) + 𝑣 ⋅ ∇𝑥(𝑓𝑝) + 𝐸 ⋅ ∇𝑣(𝑓𝑝) = 0

⟹ ∫
𝐷𝑥×ℝ𝑑𝑣

𝜕𝑡(𝑓𝑝)𝑑𝑥𝑑𝑣 + ∫
ℝ𝑑𝑣

(𝑣 ⋅ ∫
𝐷𝑥

∇𝑥𝑓𝑝𝑑𝑥) 𝑑𝑣 + ∫
𝐷𝑥

𝐸 ⋅ (∫
ℝ𝑑𝑣

∇𝑣𝑓𝑝𝑑𝑣) 𝑑𝑥 = 0,

where the last implication holds since 𝐸 does not depend on 𝑣. Moreover,

∫
𝐷𝑥

∇𝑥(𝑓𝑝) = 0 and ∫
ℝ𝑑𝑣

∇𝑣𝑓𝑝𝑑𝑣 = 0.
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Thus,
𝜕𝑡 ∫

𝐷𝑥×ℝ𝑑𝑣

𝑓𝑝 = 0.

For the conservation of momentum, we make use of the momentum density 𝑗(𝑡, 𝑥) as
defined in (III-1.4):

𝑗(𝑡, 𝑥) = ∫
ℝ𝑑𝑣

𝑣𝑓𝑑𝑣.

By differentiating with respect to time, we get

𝜕𝑡𝑗(𝑡, 𝑥) = ∫
ℝ𝑑𝑣

𝑣𝜕𝑡𝑓𝑑𝑣.

Recall that 𝑓 is solution to the Vlasov equation, thus

𝜕𝑡𝑗(𝑡, 𝑥) = ∫
ℝ𝑑𝑣

𝑣 (𝑣 ⋅ ∇𝑥𝑓(𝑡, 𝑥, 𝑣) + 𝐸(𝑡, 𝑥) ⋅ ∇𝑣𝑓(𝑡, 𝑥, 𝑣)) 𝑑𝑣.

Moreover, for 𝑖 = 1, … , 𝑑,

∫
ℝ𝑑𝑣

𝑣𝑖 (𝐸(𝑡, 𝑥) ⋅ ∇𝑣𝑓(𝑡, 𝑥, 𝑣)) 𝑑𝑣 =
𝑑𝑣

∑
𝑗=1

𝐸𝑗(𝑡, 𝑥) ∫
ℝ𝑑𝑣

𝑣𝑖𝜕𝑣𝑗
𝑓(𝑡, 𝑥, 𝑣)𝑑𝑣

= −
𝑑𝑣

∑
𝑗=1

𝐸𝑗(𝑡, 𝑥) ∫
ℝ𝑑𝑣

𝑓(𝑡, 𝑥, 𝑣)𝜕𝑣𝑗
𝑣𝑖𝑑𝑣

= −𝐸𝑖(𝑡, 𝑥) ∫
ℝ𝑑𝑣

𝑓(𝑡, 𝑥, 𝑣)𝑑𝑣 = −𝐸𝑖(𝑡, 𝑥)𝜌(𝑡, 𝑥),

so that
𝜕𝑡𝑗(𝑡, 𝑥) = ∫

ℝ𝑑𝑣

𝑣 (𝑣 ⋅ ∇𝑥𝑓(𝑡, 𝑥, 𝑣)) 𝑑𝑣 − 𝐸(𝑡, 𝑥)𝜌(𝑡, 𝑥).

After integration with respect to 𝑥 ∈ 𝐷𝑥, we obtain

𝜕𝑡ℳ(𝑡) = − ∫
𝐷𝑥

𝐸(𝑡, 𝑥)𝜌(𝑡, 𝑥)𝑑𝑥.

Recall that
𝐸(𝑡, 𝑥) = ∇𝑥Φ(𝑡, 𝑥) and 𝜌(𝑡, 𝑥) = Δ𝑥Φ(𝑡, 𝑥),

thus

𝜕𝑡𝑀(𝑡) = − ∫
𝐷𝑥

𝐸(𝑡, 𝑥)𝜌(𝑡, 𝑥)𝑑𝑥 = − ∫
𝐷𝑥

∇𝑥Φ(𝑡, 𝑥)ΔΦ(𝑡, 𝑥)𝑑𝑥 = ∫
𝐷𝑥

∇𝑥 (|∇𝑥Φ|2) 𝑑𝑥 = 0,

since we assume Φ to be vanishing at infinity (when 𝐷𝑥 = ℝ𝑑), or Φ is periodic (when
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𝐷𝑥 = 𝕋𝑑). This shows the conservation of momentum.
For the total energy, we copy the proof from [73, Sect. 4.2.3]. Start by multiplying the

Vlasov equation by |𝑣|2 and integrate over 𝐷𝑥 ×ℝ𝑑𝑣 . Owing to the fact that ∫
𝐷𝑥

∇𝑥𝑓 = 0,
we get

⟹ 𝜕𝑡 ∫
𝐷𝑥×ℝ𝑑𝑣

|𝑣|2𝑓 − 2 ∫
𝐷𝑥

𝐸 ⋅ ∫
ℝ𝑑𝑣

𝑣𝑓 = 0.

Then
𝜕𝑡 ∫

𝐷𝑥×ℝ𝑑𝑣

|𝑣|2𝑓 = 2 ∫
𝐷𝑥

𝐸 ⋅ 𝑗.

By integrating the Vlasov equation over 𝑣, one gets

𝜕𝑡𝜌 + ∇𝑥 ⋅ 𝑗 = 0.

Moreover,

1
2

𝑑
𝑑𝑡

∫
𝐷𝑥

|𝐸|2𝑑𝑥 = ∫
𝐷𝑥

𝐸 ⋅ 𝐸𝑡 = ∫
𝐷𝑥

∇𝑥Φ ⋅ ∇𝑥𝜕𝑡Φ

= − ∫
𝐷𝑥

ΦΔΦ = − ∫
𝐷𝑥

Φ𝜕𝑡𝜌 = ∫
𝐷𝑥

Φ∇ ⋅ 𝑗

= − ∫
𝐷𝑥

𝑗 ⋅ ∇𝑢 = − ∫
𝐷𝑥

𝑗 ⋅ 𝐸.

Finally,
𝑑
𝑑𝑡

(∫
𝐷𝑥×ℝ𝑑𝑣

|𝑣|2𝑓𝑑𝑥𝑑𝑣 + ∫
𝐷𝑥×ℝ𝑑𝑣

|𝐸|2𝑑𝑥) = 0

Numerically, the exact conservation of quantities is challenging for many reasons: alias-
ing, finite-difference errors, finite-timestep errors, round-off errors…The numerical conser-
vation of invariants is a key challenge that was identified early (see e.g. [84, Section 7.6]).
In general, we cannot expect numerical methods to conserve exactly all the continuous
invariants since numerical methods induce approximations in one way or another.

However, the size of the approximation is often a very good indicator of the accuracy
of the numerical method. This is why the computation of conserved quantities is usually
done to monitor the quality of solutions. In [28], Brackbill has underlined the importance
of conserving both momentum and energy for the Vlasov-Poisson system.

For long-time simulations, it is sometimes argued that the conserved quantities are
more important than the solution itself. Because of this, some authors have proposed
schemes that specifically focus on conserving some invariants. One such example is the
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Energy-conserving method proposed by Birdsall and Langdon in [22].
Some other authors have recently tried to focus on the geometrical structure of the

equation, from which some invariants can be deduced. We can cite for instance GEMPIC,
for GEometric Particle In Cell, see [100] and a modified version in [123]. We can also cite
[52] who focuses on the Hamiltonian structure.

A comparison of two schemes is given in [86]: one scheme is based on standard finite
elements and the other one on structure-preserving geometric finite elements. It is observed
that the structure-preserving scheme yields better results.
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The first result of global existence and uniqueness for the Vlasov-Poisson system in
dimension one was proved by Iordanskii in 1964 [91]. In the multidimensional context, a
global existence result for Vlasov-Poisson was stated by Caljub-Simon in 1973 [34].

The existence and uniqueness of classical solutions in the two-dimensional case is
proved by Ukai and Okabe in 1978 [137].

The global existence result for weak solutions of the three-dimensional Vlasov equation
is due to Arsen’ev [6]. Batt [14] showed global existence of classical solution of the Vlasov-
Poisson system for spherically symmetric initial data. Horst [89] extended this result
to cylindrically symmetric data. In [58], the global existence for the three-dimensional
Vlasov-Poisson system is shown by Degond and Bardos for small initial data. The size
restriction is lifted by Pfaffelmoser in [122]. Alternative proofs can be found in [129, 106,
88].

In dimension 𝑑 ≥ 4, the existence of global solutions for the Vlasov-Poisson system
in stellar dynamics cannot happen. Indeed, Horst [90] constructed a counterexample. But
there is at least local existence in dimension 𝑑 ≥ 3, as shown by Ukai and Okabe [137].

We have not stated any existence theorem from the cited references yet, because a
more recent existence result in particular functional spaces will be given later in Section
III-4.1.

III-3.1 Numerical methods

In addition to the theoretical studies performed on the Vlasov-Poisson or Vlasov-
Maxwell systems, a large amount of works are dedicated to the numerical simulation
of these systems. Numerous schemes have been developed since the 1960s, and still no
general-purpose method is satisfactory today: some schemes are focused on long-time
simulations, others on small-time simulations with a huge precision, some use the geomet-
rical properties of the equations, some are dedicated to a high-dimensional phase-space, …
Moreover, nearly every one of these schemes have been improved throughout the decades,
leading us to two broad families of schemes: the grid-based ones, and the particle ones.
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A third type of schemes was initially considered, namely the spectral schemes 1, but the
two former have been more widely used since. In addition to these “classical schemes”,
the search for new algorithms has very recently led people towards “newer approaches”.
Among them, we can find the machine-learning based methods. One such example is the
PINN framework, for Physics-Informed Neural Networks. It was introduced by Raissi et
al. in [125], and consists in using neural networks that are trained to respect given laws of
physics. An application of PINN to the Vlasov-Poisson system can for instance be found
in [144]. We refer to [54] for a review about PINN. Some authors have also used machine-
learning based algorithms that focus on the Hamiltonian structure of the equations, see
for instance [61]. Among the “newer approaches”, one can also find quantum-based ap-
proaches, such as [142] where an algorithm generally used for quantum computation is
applied to the Vlasov-Poisson system. The algorithm essentially consists in discretizing
the Vlasov equation using finite differences, writing the distribution function under the
form of a product of tensors, and applying a low-rank approximation to each of these ten-
sors. See also [83] which presents a quantum algorithm to solve the Boltzmann-Maxwell
six-dimensional equations. In this thesis we will not focus on any of these “newer ap-
proaches”.

It has been observed very early – as soon as the 1960s and 1970s, see [10, 99, 5, 118,
43, 97] – that one of the main difficulties arising in the numerical simulation of the Vlasov-
Poisson system (III-2.2) are the steep gradients appearing in the distribution function.
They are called filaments, and the phenomenon is called filamentation. It is illustrated in
Figure III-3.1: starting from two straight beams of electrons (the red parts) in a periodic
𝑥-domain at time 𝑡 = 0, the solution after some time 𝑡 = 𝑇 has “mixed” the two beams
of electrons and a vortex is created.

III-3.1.1 Spectral methods

Spectral methods were studied in detail at the beginning of computer simulations of
the Vlasov equation. Early studies, starting from the late 1960s, were concerned only
about the one-dimensional case. This is partly due to the computational power available
at that time, but also because it is easier to perform numerical analysis (theoretical as
well as numerical).

Among the earliest works, Knorr [99] used a Fourier transform in space, and Arm-
strong [5] considered a Hermite basis in velocity, in addition to a Fourier expansion in
space. The Hermite basis had been studied previously for the Boltzmann equation [75].
In these bases, the Vlasov-Poisson system can be expressed as coupled nonlinear ordinary
differential equations on the expansion coefficients. Numerically, infinite bases have to be

1. See Chapter II-3 – Spectral Methods for more details about spectral methods.

64



III-3.1. Numerical methods

(a) Initial condition 𝑓0. (b) Approximate solution after a time 𝑇 = 30.

Figure III-3.1 – Illustration of filamentation on the Two-Stream Instability example, de-
tailed in Section III-4.4.4.

truncated because we can only deal with a finite number of modes. This approximation
is investigated numerically on the Landau damping example 2, and it is verified that the
Fourier series converges rapidly so that the truncation is justified. However, the truncation
of the Hermite basis was inadequate since the Vlasov-Poisson system creates filamenta-
tion with time, i.e. steep velocity gradients, and thus more and more Hermites modes are
needed. The Hermite and Fourier bases were also investigated in [95]. The Fourier basis is
appropriate if only a few Fourier modes are necessary, and it has also been reported that
the truncated Hermite expansion is numerically unstable. The authors of [95] provide a
cut-off procedure of the bases, which is reported to work well for the linear Vlasov equa-
tion. For the nonlinear Vlasov equation, the quality of the cut-off depends on the case
studied.

In [118, p. 1058] , J. Nührenberg sums up quite well the restrictions the above works
suffer from:

“
”J. Nührenberg (1971)

… the difficulties related to the truncation of the Hermite expansion
appear to be more serious than those which arise from using a finite
interval in 𝑦-space. Therefore this method has so far been restricted
to a one-dimensional velocity space.

The work [118] was developed as a way of bypassing the limitations of [5, 95] related to
the use of Fourier transform in 𝑥 – which can only be used for linear or weakly nonlinear

2. More details in Section III-4.4 – Numerical Simulations.
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problem – and Hermite basis in 𝑣. After performing a Fourier transform in 𝑣, a second-
order scheme explicit in time is used. The derived scheme is stable under the condition

Δ𝑡
Δ𝑥Δ𝑣 < 1

2 , where Δ𝑡 is the timestep, and Δ𝑥 (resp. Δ𝑣) denotes the space (resp. velocity)
grid stepsize.

In [98], Klimas studies the Fourier-Fourier basis on a modified Vlasov-Poisson system,
following an early study of the Fourier-Fourier basis by Knorr [99]. The system is modified
in order to take into account the displacement of the space average of the electric field,
which is a phenomenon observed in physical situations.

A Fourier-transformed velocity space is investigated by Eliasson in [63, 64, 62] in the
context of the Vlasov-Maxwell system, and he uses outflow boundary conditions for the
Fourier-transformed velocity space in order to create dissipation and reduce the so-called
“recurrence phenomenon” that usually appears in velocity space.

In order to tackle the issues related to the Hermite basis, Holloway [87] proposed us-
ing an asymmetrically-weighted Hermite basis for the velocity expansion, and reported
a much better stability and better conservation results. In particular, a “usual” (i.e.
symmetrically-weighted) Hermite expansion prevents the simultaneous conservation of
mass and momentum, but conserves the 𝕃2 norm. An asymmetrically-weighted expansion
allows for the conservation of mass, momentum and total energy, but does not conserve
the 𝕃2 norm. This can be explained as follows: with a symmetrically-weighted Hermite
expansion, the time dependence of the 𝑛-th mode is coupled to the (𝑛 + 1)-th mode,
which yields the truncation issues we mentioned previously. On the other hand, with
an asymmetrically-weighted Hermite expansion, the time dependence of the 𝑛-th mode
only depends on the (𝑛 − 1) lower modes, hence the exact time dependence of each
Hermite mode can be recovered. However, since the 𝕃2 norm is not conserved with an
asymmetrically-weighted Hermite basis, a scheme based on this expansion is not numer-
ically stable. Some numerical tests involving this asymmetrically-weighted Hermite basis
are presented in [59, 39]. Recently, Bessemoulin-Chatard and Filbet [21] introduced a
weighted 𝕃2 space in which the asymmetrically-weighted Hermite expansion is stable.
A convergence result by the same authors is then given in [20]. We can also cite [24]
which considers renormalized Hermite coefficients in order to be able to use the classical
unweighted 𝕃2 space, and [25] which uses the same idea in the context of the Vlasov-
Poisson-Fokker-Planck system.

The transition between spectral and grid-based methods is done in some sense by
Galerkine-type methods. They are methods for which we consider a discretization of the
phase-space into cells, and in each cell we look for an approximate solution belonging
to some functional space or with some given form (often, under the form of a piecewise
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polynomial). In most applications, the discontinuous Galerkine method is used, and its
early applications to Vlasov equations can be found in [80, 44]. The first step of these
methods consists in discretizing the phase space in order to obtain an equation of the
form 𝑑

𝑑𝑡𝐺ℎ = 𝑅(𝐺ℎ) (following notations of [44]). The second step consists in applying a
time integrator (e.g. a Runge-Kutta scheme) in order to get an approximate solution at
the next time step. This general procedure is sometimes called method of lines. For more
details, see [45, 44, 21].

III-3.1.2 Grid-based methods

As their name indicates, these methods are based on a grid discretization of the phase-
space (𝑥, 𝑣). Perhaps the easiest schemes to think of are the difference schemes, which were
proposed by Kellog in [96] and by Nührenberg in [118]. See also [135].

Soon after, in 1976, Cheng and Knorr [43] split the position and velocity part of the
equation, using Strang splitting 3 (second order in time). This is possibly the first account
of what will be later called a Backward Semi-Lagrangian scheme.

“
”Cheng & Knorr (1976) in [43, p.332]

We have thus reduced the integration of the Vlasov equation to
two successive interpolation problems.

More details about this scheme can be found at the end of this section. The Backward
Semi-Lagrangian scheme from [43] makes use of Fourier interpolation to avoid dissipation
from the linear and cubic splines. Then, incremental studies followed [93, 71, 92], studying
variations of [43]. Cubic Hermite interpolation has also been used by Nakamura and Yabe
[115]. A modern presentation of the semi-Lagrangian scheme is given in [132]. Among
other grid-based methods, we can cite the work of Filbet [68], who proposed a finite
volume scheme and showed its convergence under a CFL condition.

Unfortunately, the common denominator of all grid-based methods is that they are not
suited for long-term simulations. Indeed, filamentation, which often occurs in nonlinear
Vlasov simulations, cannot be resolved by grid methods if the filaments are finer than the
grid. This makes long-time simulations of small phenomena very hard to do, as underlined
in [97, 67].

It has to be noted that the Backward Semi-Lagrangian scheme is still widely used

3. More details about splitting can be found in Section II-2 – Time-splitting.
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today, with improvements that appeared over the years. It has proved its relative efficiency
for high-dimensional problems because it is possible – through some splitting – to only
solve a sequence of one-dimensional problems, though it remains computationally very
expensive to simulate high-dimensional problem. These methods are also particularly
interesting from a convergence point of view, as can be seen from the error estimate of
Besse and Mehrenberger [19], improved later by Charles, Després and Mehrenberger in
[40]. The improved version of the error estimate is:

𝒪 (min (Δ𝑥
Δ𝑡

, 1) Δ𝑥𝑝 + Δ𝑡2) .

In this case, the error estimate quantifies the absolute difference between exact and ap-
proximate solutions, evaluated at grid points. In order to obtain this error estimate in the
semi-Lagrangian framework, they considered a Lagrangian interpolation of order 𝑝 + 1.
We also refer to [18] for an earlier convergence estimate, as well as [36] for a convergence
estimate in the case of an adaptive mesh.

For the good convergence properties, its wide usage, and also because we will use it
later in Section III-4, let us give details on how the Backward Semi-Lagrangian scheme
works.

Backward Semi-Lagrangian scheme The main idea behind this method is that the
unknown function 𝑓 is constant along the characteristics. More precisely, using the pre-
viously defined notations for the characteristics, we make important use of the following
relation:

𝑓(𝑡1, 𝑥, 𝑣) = 𝑓(𝑡0, 𝑋(𝑡0; 𝑡1, 𝑥, 𝑣), 𝑉 (𝑡0; 𝑡1, 𝑥, 𝑣)). (III-3.1)

This relation is the core of Semi-Lagrangian schemes. If 𝑡0 < 𝑡1, we talk about a Back-
ward Semi-Lagrangian scheme (BSL), and if 𝑡1 < 𝑡0 we call the scheme Forward Semi-
Lagrangian (FSL). The forward scheme was introduced by Crouseilles, Respaud and Son-
nendrücker [53] in 2009. Let us focus on the case 𝑡1 > 𝑡0 since it is the most widely used
of the two.

We assume a time-discretization {𝑡𝑛}𝑁𝑇
𝑛=0, 𝑁𝑇 ∈ ℕ∗. It is not required that this time

discretization is uniform. Suppose that one knows exactly the values of the unknown
function 𝑓 at time 𝑡𝑛 on the whole domain 𝕋𝑑 × ℝ𝑑, and wishes to get an approximation
of the function 𝑓 at time 𝑡𝑛+1. The Backward Semi-Lagrangian scheme consists, for every
point (𝑥, 𝑣) of the phase-space, in solving the characteristics backward in time. This means
solving (III-2.10) when 𝑡 < 𝑠. Using (III-3.1), the value of the unknown function 𝑓 at (𝑥, 𝑣)
at time 𝑡𝑛+1 is the same as the value at the point (𝑋(𝑡𝑛; 𝑡𝑛+1, 𝑥, 𝑣), 𝑉 (𝑡𝑛; 𝑡𝑛+1, 𝑥, 𝑣)) at
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Figure III-3.2 – Grid discretization of the phase space.

time 𝑡𝑛. In other words,

𝑓(𝑡𝑛, 𝑋(𝑡𝑛; 𝑡𝑛+1, 𝑥, 𝑣), 𝑉 (𝑡𝑛; 𝑡𝑛+1, 𝑥, 𝑣)) = 𝑓(𝑡𝑛+1, 𝑥, 𝑣).

Since the function 𝑓 at time 𝑡𝑛 is supposed to be known exactly, we only need to solve
the characteristics in order to get the function 𝑓 at time 𝑡𝑛+1 on the whole phase-space.

This simple idea holds for a continuous phase-space, and needs to be adapted to a
phase-space discretization. The essential change is that the phase-space is not anymore
𝕋𝑑 × ℝ𝑑 but only a finite number of points, the grid.

For this grid discretization, the true phase-space 𝕋𝑑 × ℝ𝑑 is first truncated to one of
finite volume, and then the finite-volume phase space is represented using only points (or
nodes). The points in this discrete phase-space can be labelled (𝑥𝑖, 𝑣𝑗) for 𝑖 ∈ 𝐽𝑥, 𝑗 ∈ 𝐽𝑣,
where 𝐽𝑥 and 𝐽𝑣 are finite subsets of ℕ𝑑. The two-dimensional situation is illustrated in
Figure III-3.2a.

Once the phase-space has been discretized, we can apply the ideas mentioned previ-
ously. If one knows the characteristics 𝑠 ↦ (𝑋(𝑠; 𝑡𝑛+1, 𝑥𝑖, 𝑣𝑗), 𝑉 (𝑠; 𝑡𝑛+1, 𝑥𝑖, 𝑣𝑗)), they just
have to evaluate 𝑓(𝑡𝑛, 𝑋(𝑡𝑛; 𝑡𝑛+1, 𝑥𝑖, 𝑣𝑗), 𝑉 (𝑡𝑛; 𝑡𝑛+1, 𝑥𝑖, 𝑣𝑗)) in order to know 𝑓(𝑡𝑛+1, 𝑥𝑖, 𝑣𝑗).
However, there are in practice two issues: the first one is that we don’t know the charac-
teristics exactly, and we can only resort to numerical integration of (III-2.10). The other
issue is that we generally don’t know the function 𝑓 at time 𝑡𝑛 for the whole continuous
phase-space, but only at nodes of the discretized phase-space. This is illustrated in Figure
III-3.2b.

To solve the first issue, we can simply suppose that the characteristics are obtained
with a sufficient precision so that the error is negligible, or can at least be estimated.
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They can even be obtained efficiently if one uses a splitting method 4 to solve for 𝑋 and
𝑉 successively in (III-2.10). For the second issue, we generally interpolate the value of
𝑓(𝑡𝑛, 𝑋(𝑡𝑛; 𝑡𝑛+1, 𝑥𝑖, 𝑣𝑗), 𝑉 (𝑡𝑛; 𝑡𝑛+1, 𝑥𝑖, 𝑣𝑗)): if (𝑋(𝑡𝑛; 𝑡𝑛+1, 𝑥𝑖, 𝑣𝑗), 𝑉 (𝑡𝑛; 𝑡𝑛+1, 𝑥𝑖, 𝑣𝑗)) falls
strictly inside a cell of the discretized phase-space, then we can interpolate the value of

𝑓(𝑡𝑛, 𝑋(𝑡𝑛; 𝑡𝑛+1, 𝑥𝑖, 𝑣𝑗), 𝑉 (𝑡𝑛; 𝑡𝑛+1, 𝑥𝑖, 𝑣𝑗))

using the value of the corners of the cell. This interpolation step may seem costly, but
it can actually be a series of one-dimensional steps and hence remain relatively efficient
even in high-dimensions.

This achieves the detailed presentation of Semi-Lagrangian schemes. Let us now focus
on the last main family of numerical methods, namely the particle methods.

III-3.1.3 Particle methods

Let us use an analogy in order to explain the idea behind particle methods. Suppose
you want to know how the water in a swimming pool behaves. It is too hard to track every
single molecule (which a continuous treatment of the solution would allow you to do), thus
you take the water out of the swimming pool and fill it with plastic balls. Besides the
incredible fun you’ll have in your new ball pit

🤡

, you are now able to track every ball
when you swim in it. If, when you increase the number of balls they also get smaller, at one
point you’ll get a pool filled with almost-liquid plastic. The behavior of this “quasi-fluid”
is almost the same as that of the water which is of interest, but it requires many, many,
plastic balls. There is then a tradeoff between how many balls you are able to track, and
how accurately you want the balls to behave like a liquid.

A particle method is exactly this. The continuous representation of the solution may
be too costly from a computational point of view, so it is discretized into small chunks,
the particles. It is clear that it suffices to discretize the initial condition 𝑓0 to have a
particle solution at all times. When the size of the chunks get smaller and smaller, the
particle representation of the plasma get closer and closer to the continuous plasma. If
there are sufficiently many particles then one is able to get a good grasp of the behavior
of the solution by looking at the particles. This is in essence related to the kinetic nature
of the Vlasov-Poisson system (III-2.2): the initial condition is assumed to be composed of
small indivisible, distinct, particles, instead of a fluid.

This avoids one of the main problems of the previous schemes, namely filamentation,
because only the characteristics are used and they do not depend on the velocity gradient
of the solution. However, particles methods present other issues. In particular, they are

4. See Section II-2 – Time-splitting for more details.
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generally very noisy and require lots of particle to yield satisfying results.
Early records of particle methods date back from the 1960s, see [32, 55] , though they

considered situations simpler than the Vlasov-Poisson system (III-2.2). In these works and
a few others – e.g. [56] – the Poisson equation was not solved but instead the Coulomb
interaction was used to model interactions between particles. This means that if 𝑁 par-
ticles were used, the complexity 5 was 𝒪(𝑁2). At that time, the number of particles was
limited to about 102 to 103 due to the computing power available.

The need for faster algorithms has quickly been recognized, and particle-mesh methods
were introduced. They allow having a particle method and in the same time computing
efficiently the Poisson equation on a grid. The Poisson equation can be efficiently solved
using a Discrete Fourier transform, but it requires points to be unformly distributed. One
issue in the particle method is that we do not know 𝜌 at equally spaced points. The
transition from particle to grid points is often called the deposition step , because the
particles are deposited onto the grid. Several deposition steps exist, among which:

— Nearest-Grid Point (NGP) [85]: for each 𝑥-cell, all the particles within the cell give
their charge to the cell center. Then the electric field is supposed constant on each
cell.

— Particle-In-Cell (PIC) [79, 114]: invented by Harlow in 1962, it uses the same
deposition step as NGP, but the electric field is then interpolated linearly between
two grid centers. This reduces fluctuations from NGP, as well as improve energy
conservation.

— Cloud-In-Cell (CIC) [23, 103]: each particle is assumed to have a given shape, the
particle charge is then deposited on nearby cells according to this shape.

These deposition steps are illustrated in Figure III-3.3.
For methods assuming a given shape function for the particles instead of a Dirac mass,

we talk about “finite-size particles”, as opposed to “zero-size particles” which would be
the Dirac masses. Reviews of particle methods and their deposition steps are given in
[119] and [138]. In [102], the effect of spatial grid and its influence on plasma behavior are
studied: it is illustrated numerically that – for some deposition methods – some nonphys-
ical instabilities appear when the grid size is too large compared to the Debye length 6.
We now turn to the description of the Particle-In-Cell approach.

Particle-in-Cell scheme It consists in following the evolution of some point particles.
More precisely, given an initial distribution 𝑓0, we approximate it by a sum of 𝑃 Dirac

5. See Section II-4 – Complexity for the notation.
6. Roughly stated, the Debye length is the minimal distance between two electrons in a plasma to be

able to distinguish one from the other. Intuitively, the nonphysical instabilities occur because a coarse
grid cannot take into account electron interactions which occur within a grid cell.
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(a) Nearest-Grid point.
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(b) Particle-in-Cell.
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(c) Cloud-in-Cell, with a Gaussian shape func-
tion.

Figure III-3.3 – Illustrations of different step depositions: Nearest-Grid Point (top left),
PIC interpolation (linear, top right), and CIC interpolation (Gaussian shape function,
bottom). The particle (orange circle) has a weight of 1, and the value of 𝜌 on the grid
(made of 8 cells, delimited by grey vertical thin lines) according to each deposition step
is given in blue.

masses, where 𝑃 ∈ ℕ∗ is supposedly large:

𝑓0(𝑥, 𝑣) ≈
𝑃

∑
𝑝=1

𝛽𝑝𝛿(𝑥 − 𝑥𝑝)𝛿(𝑣 − 𝑣𝑝) =∶ ̃𝑓0(𝑥, 𝑣). (III-3.2)

The variables (𝑥𝑝, 𝑣𝑝) are called the initial coordinates of the particle 𝑝 in the phase-space,
𝑝 ∈ [[1, 𝑃 ]]. Here 𝛿(⋅) denotes the usual Dirac mass. The quantity 𝛽𝑝 is the weight of the
particle labelled 𝑝, and the weights are usually chosen uniform in Particle-In-Cell methods.
In (III-3.2), each Dirac mass represents a collection of sub-particles who are defined only
by a point in the phase-space. Moreover it is implicitely assumed that all sub-particles
from the same collection remain “close” for all times to the Dirac mass representing the
collection. These Dirac masses are usually called meta-particles, because each one of them
is treated numerically as one particle but may represent physically many sub-particles.
Some schemes, such as those presented in [82, 37, 35, 70], allow the meta-particles to be
deformed, and even to split or recombine.

Variants of the PIC algorithm have also been used for fluid equations, where additional
care is paid to thermodynamic variables. We can cite for instance GAP [107], PAL [109],
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SOAP [117], and FLIP [30, 29]. The PIC algorithm has also been used in magnetohydro-
dynamics. See also [134] for use cases where electrons and ions are treated differently.

In the aforementioned works, the Poisson equation (III-1.6) is solved on a grid using a
difference scheme (see for example [84, 22]). Later, the FFT 7 has been more widely used.
Starting from the late 1970s, simulations with several millions of particles were doable
(see [84, Section 9.1.3]).

However, the use of the PIC algorithms or its variants still cause problems. The main
ones are instabilities – “a fundamental property of particle-in-cell codes” [27] – and the
nonconservation of energy or momentum [28]. The grid used in PIC methods is at the
heart of most PIC-related issues. The SPH method [72, 113] is one of the rare grid-free
particle methods, and relies on the representation of the solution via an interpolant kernel.
It has found numerous applications in astrophysics [112] but, depending on the interpolant
kernel, it can have a complexity of order 𝒪(𝑁2). The use of compactly supported kernels,
as suggested in [112], reduces complexity at the expense of a rougher approximation of the
electric field: only the nearby particles contribute to the force applied to a given particle,
instead of every particle as Coulomb interaction tells us.

Another grid-free approach has been proposed in [46]. It is based on the Boundary
Integral/Treecode (BIT) method, and the key idea is to replace the particle-particle in-
teractions by particle-cluster interactions. The Fast Multipole Method 8 can be used [76,
41].

Recently, an algorithm based on the Non Uniform Fourier Transform has been pro-
posed [65], and an efficient version [111] has been made using Non Uniform Fast Fourier
Transform.

A big argument in favor of particle methods is the good scaling with respect to dimen-
sion. In order to compute the charge density 𝜌 as well as some other physical quantities
(e.g. total energy, electrical energy, momentum, …), a numerical integration is required.
In high-dimensional cases, this quickly becomes a difficult problem. The Monte-Carlo in-
tegration [9] allows to obtain approximate values for these integrals with an error scaling
as 𝒪(𝑁−1/2), where 𝑁 is the total number of particles used. On the other hand, if a grid-
based method was used with 𝑀 discretization points in each dimension, the number of
points would be 𝒪(𝑀𝑑) while the error is 𝒪(1/𝑀𝛾), where 𝛾 is the order of the numerical
integration (generally, 𝛾 ≈ 1, 2, 3).

Brackbill mentions in [26] the huge link between computational fluid dynamics and
plasma modelling. In particular, the PIC method and its variants in the context of plasma
physics are very similar to the Vortex methods for Euler fluid equations.

7. See Section II-5 – The Fourier transforms for more details on FFT.
8. Considered one the top 10 algorithms of the XXth century, according to [47].
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Finally, we refer to [126, 48] for a study of particle methods and to [130] for a discussion
of physical situations.
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The Weighted Particle
method

Part III

4 C
H

A
P
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This chapter is based on the paper [105], published in Numerische Mathematik.

In this Chapter we present a particle scheme introduced in [13], and give a conver-
gence result. The proof of the convergence result is detailed in the next Chapter. The
scheme was first used to study the magnetization of the Hamiltonian Mean-Field model.
Unfortunately, the authors only gave a brief description of the algorithm with no con-
vergence proof, even though the scheme is promising. Our goal is to detail thoroughly
the method, and to prove its convergence. The approach presented is different from the
Particle-in-Fourier method [111], mainly in the way the charge density is computed, and
how the approximate solution is represented. The main advantages of the approach consid-
ered is that it allows to obtain high-order estimates by combining well-studied high-order
methods, such as integral quadratures and time integration schemes. The convergence es-
timate shows that with smooth enough initial data, the Fourier truncation error becomes
negligible, so that we don’t need many Fourier modes in practice.

A by-product of this approach is that all the error terms are decoupled, yielding a
relatively easy proof of convergence. This method is named “Weighted Particle method”.

We start Section III-4.1 by giving a particular existence result in Sobolev regularity
from [38]. Then we will discuss several ways of computing the electric field in the Vlasov-
Poisson system. We then finish with a presentation of the Fourier approach to solve the
Poisson equation, which will be at the core of the method presented and will allow the
definition of a truncated Fourier kernel to the Vlasov-Poisson equation. This truncated
Fourier kernel can be seen as an approximation to the exact Fourier kernel which involves
infinitely many modes. In Section III-4.2 we explain how the Weighted Particle method is
obtained naturally from the truncated Fourier kernel. The building blocks of this scheme
are integral quadratures and time integration schemes, allowing a high-order method.
Starting from the quadratures, we deduce the particle representation of the approximate
solution in a natural way. Moreover, the method presented is totally grid-free since the
particles don’t require to be deposited onto some grid as it is done, for example, in the
Particle-In-Cell method. Section III-4.3 is dedicated to the Weighted Particle method. We
start by discussing how this method differs from others in the literature, and then present
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the main result: the convergence of the approximate characteristics obtained through the
Weighted Particle method towards the true characteristics of the Vlasov-Poisson system.
One-dimensional numerical results are presented in Section III-4.4 to illustrate the accu-
racy one can obtain with relatively few particles. The proof of the convergence result will
be given in the next Chapter.

III-4.1 Preliminaries

For a given multi-index 𝑝 = (𝑝1, … , 𝑝𝑑) ∈ ℕ𝑑, we denote by 𝜕𝑝
𝑥 the multi-derivative

𝜕𝑝1𝑥1 … 𝜕𝑝𝑑𝑥𝑑 . Similarly, we set 𝑣𝑚 = 𝑣𝑚1
1 … 𝑣𝑚𝑑

𝑑 for 𝑣 = (𝑣1, … , 𝑣𝑑) ∈ ℝ𝑑 and 𝑚 =
(𝑚1, … , 𝑚𝑑) ∈ ℕ𝑑. We let | ⋅ | the usual Euclidian norm on ℝ𝑑. As the functional frame-
work, we will consider the spaces ℋ𝑟

𝜈(𝑈 × 𝑉 ) equipped with the norms

||𝑓||2ℋ𝑟
𝜈

= ∑
(𝑚,𝑝,𝑞)∈(ℕ𝑑)3

|𝑝|+|𝑞|≤𝑟
|𝑚|≤𝜈

∫
𝑉

∫
𝑈

|𝑣𝑚𝜕𝑝
𝑥𝜕𝑞

𝑣𝑓(𝑥, 𝑣)|2 𝑑𝑥𝑑𝑣. (III-4.1)

We will mostly talk about the space ℋ𝑟
𝜈(𝕋𝑑 × ℝ𝑑), and for sake of clarity we will

simply denote this space ℋ𝑟
𝜈. These weighted Sobolev spaces were already considered in

[57]. We have the following existence result from [38]:

Theorem III.1

Let 𝜈 > 𝑑/2, 𝑟 ≥ 3𝜈. There exist constants 𝐶𝑟,𝜈 and 𝐿𝑟,𝜈 such that for all given 𝐵 > 0
and 𝑓0 ∈ ℋ𝑟+2𝜈+1

𝜈 such that ||𝑓0||ℋ𝑟+2𝜈+1
𝜈

≤ 𝐵, then for all 𝛼, 𝛽 ∈ [0, 1], there exists a
solution 𝑓(𝑡, 𝑥, 𝑣) of the Vlasov-Poisson equation

𝜕𝑡𝑓 + 𝛼𝑣 ⋅ ∇𝑥𝑓 + 𝛽∇𝑥Φ ⋅ ∇𝑣𝑓 = 0, (III-4.2)

with initial value 𝑓(0, 𝑥, 𝑣) = 𝑓0(𝑥, 𝑣) on the interval [0, 𝑇 ] with

𝑇 ∶=
𝐶𝑟,𝜈

1 + 𝐵
, (III-4.3)

and we have the estimate

∀𝑡 ∈ [0, 𝑇 ], ||𝑓(𝑡)||ℋ𝑟+2𝜈+1
𝜈

≤ min (2𝐵, 𝑒𝐿𝑟,𝜈(1+𝐵)𝑡) ||𝑓0||ℋ𝑟+2𝜈+1
𝜈

. (III-4.4)

Moreover, for two initial conditions 𝑓0 and 𝑔0 satisfying the previous hypothesis, we
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have
∀𝑡 ∈ [0, 𝑇 ], ||𝑓(𝑡) − 𝑔(𝑡)||ℋ𝑟

𝜈
≤ 𝑒𝐿𝑟,𝜈(1+𝐵)𝑡 ||𝑓0 − 𝑔0||ℋ𝑟

𝜈
. (III-4.5)

This result holds in the functional space ℋ𝑟+2𝜈+1
𝜈 which is a subspace of the usual

Sobolev space 𝐻𝑟+2𝜈+1(𝕋𝑑
𝐿 × ℝ𝑑) = 𝑊 𝑟+2𝜈+1, 2(𝕋𝑑

𝐿 × ℝ𝑑).

III-4.1.1 Particle methods

From (III-2.11), the approximate solution to the Vlasov-Poisson system with initial
condition ̃𝑓0 can be reconstructed at time 𝑡 if we know the characteristics at time 𝑡. The
approximate solution at time 𝑡 writes

𝑓(𝑡, 𝑥, 𝑣) ≈ ̃𝑓0(𝑋(0; 𝑡, 𝑥, 𝑣), 𝑉 (0; 𝑡, 𝑥, 𝑣)) =
𝑃

∑
𝑝=1

𝛽𝑝𝛿(𝑋(0; 𝑡, 𝑥, 𝑣) − 𝑥𝑝)𝛿(𝑉 (0; 𝑡, 𝑥, 𝑣) − 𝑣𝑝).

(III-4.6)
The product of Dirac masses in the sum is non zero if and only if

{
𝑋(0; 𝑡, 𝑥, 𝑣) = 𝑥𝑝

𝑉 (0; 𝑡, 𝑥, 𝑣) = 𝑣𝑝
(III-4.7)

From (III-2.9) this is equivalent to

{
𝑥 = 𝑋(𝑡; 0, 𝑥𝑝, 𝑣𝑝)

𝑣 = 𝑉 (𝑡; 0, 𝑥𝑝, 𝑣𝑝)
(III-4.8)

Therefore, the approximate solution to the Vlasov-Poisson system with initial condition
̃𝑓0 can be written as

𝑓(𝑡, 𝑥, 𝑣) ≈
𝑃

∑
𝑝=1

𝛽𝑝𝛿(𝑥 − 𝑋(𝑡; 0, 𝑥𝑝, 𝑣𝑝))𝛿(𝑣 − 𝑉 (𝑡; 0, 𝑥𝑝, 𝑣𝑝)). (III-4.9)

Hence, it is sufficient to follow the characteristics forward in time in order to be able to
reconstruct the approximate solution for all times. The main problem with this approach
is that, after a time 𝑡, the particles are completely disorganized in the phase-space, and
hence one needs a “pre-processing” step before being able to compute the electric field
𝐸(𝑡, ⋅) which is obtained as 𝐸(𝑡, ⋅) = ∇𝑥Φ(𝑡, ⋅), where Φ(𝑡, ⋅) is the solution to (III-2.2b).
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III-4.1.2 Electric field

Kernel-based computation In order to solve the Poisson equation (III-2.2b), one may
want to use a Green kernel 𝐺 to compute 𝐸 exactly:

𝐸(𝑡, 𝑥) = ∫
𝕋𝑑

𝒦(𝑥, 𝑦) ⋅ (𝜌(𝑡, 𝑦) − 1
|𝕋𝑑

𝐿|
∫

𝕋𝑑

𝜌(𝑡, ̃𝑥)𝑑 ̃𝑥) 𝑑𝑦, (III-4.10)

where
𝒦(𝑥, 𝑦) = −∇𝑥𝐺(𝑥, 𝑦), −Δ𝑥𝐺(𝑥, 𝑦) = 𝛿0(𝑥 − 𝑦).

This approach can be found in [141, 18, 128], and because it introduces a discontinuity
in the kernel 𝒦 along the line {𝑥 = 𝑦}, there have been some attempts at smoothing it,
see e.g. [140].

However the way the electric field is smoothed depends on the authors, and it may
seem arbitrary to choose one way or another. In the case of initial particles nonuniformly
spaced, the authors of [141] conclude that a mollified version of the kernel 𝐺, depending
on some mollification parameter, may be preferable to the unmollified version.

This Green kernel-based approach has also been used for numerical computations of
fluid dynamics (e.g. Euler equations) in the so-called Vortex and Vortex Blob methods
(see [3, 121, 7]). These methods face the same issues, but the convergence of the former
methods seems to be have treated more thoroughly (see e.g. [78, 16, 15, 49, 74, 50]). In
particular, the authors of these papers have also faced the question of whether or not
to mollify the Green kernel, and the overwhelming opinion is that the kernel has to be
mollified in order to obtain realistic physical results. Because of the similarities between
particle and vortex methods, we can assume this conclusion also holds for particle methods
applied to plasma situations. We can also cite [81], where the authors obtain a smooth,
high-order kernel approximating the Green kernel 𝐺.

The mollification of the Green kernel involved in plasma or fluid dynamic simulations
depends on some mollification parameter which is chosen rather arbitrarily in the cited
papers. Hence it may not be satisfactory to rely on mollifying the Green kernel, even
though its regularized version yields more physical results.

Fourier approach

It has been mentioned previously, the Poisson equation on an uniform grid is easier and
faster to solve than the full Coulomb interactions. This explains why the Poisson formula-
tion has been more studied for particle methods in the last decades. The Fourier approach
detailed thereafter consists in solving the Poisson equation with periodic boundary con-
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ditions by making use the Fourier transform. The Fourier transform can be approximated
numerically in a very efficient manner using the Fast Fourier Transform 1, thus the Fourier
approach is a good direction in which to look for a fast and efficient particle algorithm.

The issues observed in practice are generally linked to the deposition step and not to
the solving of the Poisson equation 2. We detail below a mesh-free particle method, which
is in particular aimed at getting rid of the deposition step.

Let 𝐿 ∶= (𝐿1, ⋯ , 𝐿𝑑), and for 𝑧 ∈ ℝ𝑑 define

𝑧
𝐿

∶= ( 𝑧1
𝐿1

, … , 𝑧𝑑
𝐿𝑑

) .

We use common notations: |𝑧| for the ℓ2 norm of a vector 𝑧 ∈ ℝ𝑑, 𝑧 ⋅ 𝑤 for the ℓ2

inner-product of two vectors 𝑧, 𝑤 ∈ ℝ𝑑, and |[0, 𝐿1] × [0, 𝐿𝑑]| = ∏𝑑
𝑖=1 𝐿𝑖. Moreover, for a

multi-index 𝑝 ∈ ℕ𝑑, define

𝑧𝑝 ∶= (𝑧1, ⋯ , 𝑧𝑑)(𝑝1,⋯,𝑝𝑑) ∶= 𝑧𝑝1
1 ⋯ 𝑧𝑝𝑑

𝑑 .

The convention we use in this Chapter for the Fourier transform ̂𝑔 of a periodic function
𝑔 ∈ 𝕃2(𝕋𝑑

𝐿) is the following:

̂𝑔(𝑘) = 1
∣𝕋𝑑

𝐿∣
∫

𝕋𝑑
𝐿

𝑔(𝑥)𝑒−2𝑖𝜋𝑘⋅ 𝑥
𝐿 𝑑𝑥, 𝑘 ∈ ℤ𝑑. (III-4.11)

The solution Φ of the Poisson equation (III-2.2b) can be obtained via straightforward
computations:

Φ(𝑡, 𝑥) = −1
∣𝕋𝑑

𝐿∣
∑

𝑘∈(ℤ𝑑)∗

1
4𝜋2 ∣ 𝑘

𝐿 ∣2
∫

𝕋𝑑
𝐿×ℝ𝑑

𝑒2𝑖𝜋𝑘⋅ 𝑥−𝑦
𝐿 𝑓(𝑡, 𝑦, 𝑣)𝑑𝑦𝑑𝑣. (III-4.12)

Moreover, since Φ is a real quantity, the imaginary part of the right-hand side is equal to
zero, so that

Φ(𝑡, 𝑥) = −1
∣𝕋𝑑

𝐿∣
∑

𝑘∈(ℤ𝑑)∗

1
4𝜋2 ∣ 𝑘

𝐿 ∣2
[cos (2𝜋𝑘 ⋅ 𝑥

𝐿
) 𝐶𝑘(𝑡) + sin (2𝜋𝑘 ⋅ 𝑥

𝐿
) 𝑆𝑘(𝑡)] , (III-4.13)

1. See Section II-5 – The Fourier transforms for more details.
2. See Section III-3 – Review of the Vlasov-Poisson literature for more details.
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where
𝐶𝑘(𝑡) ∶= ∫

𝕋𝑑
𝐿×ℝ𝑑

cos (2𝜋𝑘 ⋅ 𝑦
𝐿

) 𝑓(𝑡, 𝑦, 𝑣)𝑑𝑦𝑑𝑣,

𝑆𝑘(𝑡) ∶= ∫
𝕋𝑑

𝐿×ℝ𝑑

sin (2𝜋𝑘 ⋅ 𝑦
𝐿

) 𝑓(𝑡, 𝑦, 𝑣)𝑑𝑦𝑑𝑣.

We easily obtain the electrical field 𝐸:

𝐸(𝑡, 𝑥) = ∇𝑥Φ(𝑡, 𝑥) (III-4.14)

= 1
∣𝕋𝑑

𝐿∣
∑

𝑘∈(ℤ𝑑)∗

1
2𝜋 ∣ 𝑘

𝐿 ∣2
𝑘
𝐿

[sin (2𝜋𝑘 ⋅ 𝑥
𝐿

) 𝐶𝑘(𝑡) − cos (2𝜋𝑘 ⋅ 𝑥
𝐿

) 𝑆𝑘(𝑡)] (III-4.15)

The formula here, with a series over 𝑘 ∈ (ℤ𝑑)∗, corresponds to the Poisson framework.
However, any truncation in the sum over 𝑘 can be done in order to approximate 𝐸. It is
intuitive to consider only a finite number of Fourier modes, and we choose to keep only the
modes {𝑘 ∈ (ℤ𝑑)∗ ∶ |𝑘| ≤ 𝐾} where 𝐾 ∈ ℕ∗ is some parameter (think of it as user-input).

The approximation of the field 𝐸 for a given 𝐾 is given by:

𝐸𝐾(𝑡, 𝑥) = ∇𝑥Φ𝐾[𝑓𝐾](𝑡, 𝑥) (III-4.16)

= 1
∣𝕋𝑑

𝐿∣
∑

𝑘∈(ℤ𝑑)∗

|𝑘|≤𝐾

1
2𝜋 ∣ 𝑘

𝐿 ∣2
𝑘
𝐿

[sin (2𝜋𝑘 ⋅ 𝑥
𝐿

) 𝐶𝐾
𝑘 (𝑡) − cos (2𝜋𝑘 ⋅ 𝑥

𝐿
) 𝑆𝐾

𝑘 (𝑡)] ,

(III-4.17)

where
𝐶𝐾

𝑘 (𝑡) = ∫
𝕋𝑑×ℝ𝑑

cos (2𝜋𝑘 ⋅ 𝑦
𝐿

) 𝑓𝐾(𝑡, 𝑦, 𝑣)𝑑𝑦𝑑𝑣

𝑆𝐾
𝑘 (𝑡) = ∫

𝕋𝑑×ℝ𝑑

sin (2𝜋𝑘 ⋅ 𝑦
𝐿

) 𝑓𝐾(𝑡, 𝑦, 𝑣)𝑑𝑦𝑑𝑣,
(III-4.18)

and where the function 𝑓𝐾 is solution to the Vlasov-Poisson equation with a truncated
kernel:

𝜕𝑡𝑓𝐾(𝑡, 𝑥, 𝑣) + 𝑣 ⋅ ∇𝑥𝑓𝐾(𝑡, 𝑥, 𝑣) + 𝐸𝐾(𝑡, 𝑥) ⋅ ∇𝑣𝑓𝐾(𝑡, 𝑥, 𝑣) = 0 (III-4.19a)

𝑓𝐾(0, 𝑥, 𝑣) = 𝑓0(𝑥, 𝑣) (III-4.19b)

We can define for a given 𝐾 ∈ ℕ∗ the characteristics of (III-4.19a) in the following
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way:

⎧
{
⎨
{
⎩

𝑑𝑋𝐾(𝑡; 𝑠, 𝑥, 𝑣)
𝑑𝑡

= 𝑉 𝐾(𝑡; 𝑠, 𝑥, 𝑣), 𝑋𝐾(𝑠; 𝑠, 𝑥, 𝑣) = 𝑥

𝑑𝑉 𝐾(𝑡; 𝑠, 𝑥, 𝑣)
𝑑𝑡

= 𝐸𝐾(𝑡, 𝑋𝐾(𝑡; 𝑠, 𝑥, 𝑣)), 𝑉 𝐾(𝑠; 𝑠, 𝑥, 𝑣) = 𝑣
(III-4.20)

These characteristics exhibit the same properties as those given in Section III-4.1.1, in
particular they are measure-preserving. Thus, for all 𝑘 ∈ (ℤ𝑑)∗ such that |𝑘| ≤ 𝐾, we
have

𝐶𝐾
𝑘 (𝑡) = ∫

𝕋𝑑×ℝ𝑑

cos (2𝜋𝑘 ⋅ 𝑋𝐾(𝑡; 0, 𝑦, 𝑣)
𝐿

) 𝑓0(𝑦, 𝑣)𝑑𝑦𝑑𝑣,

𝑆𝐾
𝑘 (𝑡) = ∫

𝕋𝑑×ℝ𝑑

sin (2𝜋𝑘 ⋅ 𝑋𝐾(𝑡; 0, 𝑦, 𝑣)
𝐿

) 𝑓0(𝑦, 𝑣)𝑑𝑦𝑑𝑣.
(III-4.21)

Remark III.5

Our electric field 𝐸𝐾 is presented here as an approximation to the exact 𝐸, however
one could also understand (III-4.19a) as an intermediate system “between” Vlasov-
HMF (in which case 𝐾 = 1) and Vlasov-Poisson (in which case 𝐾 → ∞).

III-4.2 Building blocks of the Weighted Particle method

The difficulty in the computations of (III-4.21) lies in the fact that we cannot know in
practice the characteristics 𝑋𝐾(𝑡; 0, 𝑦, 𝑣) and 𝑉 𝐾(𝑡; 0, 𝑦, 𝑣) for all starting points (𝑦, 𝑣) ∈
𝕋𝑑

𝐿 × ℝ𝑑. Hence, it is natural to look at quadrature approximations, which would only
involve the characteristics for a finite number of starting points.

III-4.2.1 Quadratures

Denote by 𝑧 = (𝑥1, ⋯ , 𝑥𝑑, 𝑣1, ⋯ , 𝑣𝑑) ∈ ℝ2𝑑 a variable of the phase-space, and suppose
along the dimension 𝑖 of the phase space we have a quadrature rule of order 𝑞𝑖 over a closed
interval 𝐼𝑖. The quadrature is defined by some nodes {𝑧𝑗

𝑖 }
𝑗
, 𝑧𝑗

𝑖 ∈ 𝐼𝑖, and nonnegative

weights {𝑤𝑗
𝑖}𝑗

. We suppose the nodes are equispaced with step Δ𝑧𝑖, i.e. 𝑧𝑗𝑖
𝑖 = 𝑧0

𝑖 + 𝑗𝑖Δ𝑧𝑖

for some Δ𝑧𝑖 > 0 and 𝑧0
𝑖 ∈ 𝐼𝑖. Under these conditions, the variable 𝑗𝑖 belongs to some

finite set 𝐽𝑖 ∶= {0, 1, ⋯ , 𝑁𝑖}, where 𝑁𝑖 ∈ ℕ∗ and 𝑁𝑖 ≤ ⌊ |𝐼𝑖|
Δ𝑧𝑖

⌋.

The error of the quadrature along dimension 𝑖 is characterized as follows: there exists
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a constant 𝐶 > 0 such that for all 𝑔 ∈ 𝐶𝑞𝑖+1(𝐼𝑖) we have

∣∫
𝐼𝑖

𝑔(𝜁𝑖)𝑑𝜁𝑖 − ∑
𝑗𝑖∈𝐽𝑖

𝑤𝑗𝑖
𝑖 𝑔(𝑧𝑗𝑖

𝑖 )∣ ≤ 𝐶 ∣∣𝜕𝑞𝑖+1
𝜁𝑖

𝑔(𝜁𝑖)∣∣𝕃∞(𝐼𝑖)
.

Examples of quadratures satisfying these conditions are the rectangle rule and Newton-
Cotes formulae of low order (high orders may involve negative weights).

Remark III.6

We consider uniform quadratures nodes with nonnegative weights for simplicity, in
order to obtain a convergence result. However it is also possible to consider in prac-
tice non-uniform quadratures (e.g. Gauss-Legendre or Gauss-Hermite quadratures) or
negative weights (e.g. high-order Newton-Cotes formulae).

Our notations for the one-dimensional case have been set so that a generalization to
the multidimensional case is straightforward. Let 𝑗 ∈ 𝐽 ∶= 𝐽1 × ⋯ × 𝐽2𝑑 the label of the
node 𝑧𝑗 = (𝑧𝑗1

1 , … , 𝑧𝑗2𝑑
2𝑑 ) in the multidimensional quadrature over 𝐼1 ×⋯×𝐼2𝑑. The weight

of the node 𝑧𝑗 is 𝑤𝑗 = 𝑤𝑗1
1 … 𝑤𝑗2𝑑

2𝑑 . The multidimensional quadrature over 𝐼1 × ⋯ × 𝐼2𝑑 is
simply a cartesian product of one-dimensional quadratures over 𝐼1, … , 𝐼2𝑑.

In order to understand how (III-4.21) is approximated using this multidimensional
integral, suppose for now that the initial condition 𝑓0 has a compact support in velocity:
this is only for the sake of understanding, and we will not use this hypothesis later. Under
this assumption, let 𝐼𝑣 = 𝐼𝑑 × ⋯ × 𝐼2𝑑 a cartesian product of finite intervals 𝐼𝑑, … , 𝐼2𝑑,
such that supp 𝑓0 ⊂ 𝕋𝑑

𝐿 × 𝐼𝑣. Then, the integrals of (III-4.21) are integrals over 𝕋𝑑
𝐿 × 𝐼𝑣

and we are able to apply quadrature rules as described above to each dimension of the
phase-space. We obtain, for all 𝑘 ∈ (ℤ𝑑)∗ such that |𝑘| ≤ 𝐾,

𝐶𝐾,ℎ
𝑘 (𝑡) = ∑

𝑗=(𝑗1,…,𝑗2𝑑)∈𝐽
cos (2𝜋𝑘 ⋅ 𝑋𝐾(𝑡; 0, 𝑧𝑗)

𝐿
) 𝑓0(𝑧𝑗)𝑤𝑗,

𝑆𝐾,ℎ
𝑘 (𝑡) = ∑

𝑗=(𝑗1,…,𝑗2𝑑)∈𝐽
sin (2𝜋𝑘 ⋅ 𝑋𝐾(𝑡; 0, 𝑧𝑗)

𝐿
) 𝑓0(𝑧𝑗)𝑤𝑗.

(III-4.22)

We give later in Proposition III.5 an estimate on the approximation errors

∣𝐶𝐾,ℎ
𝑘 (𝑡) − 𝐶𝐾

𝑘 (𝑡)∣ and ∣𝑆𝐾,ℎ
𝑘 (𝑡) − 𝑆𝐾

𝑘 (𝑡)∣ ,

depending on the order 𝑞𝑖 of the quadratures and the quadrature steps Δ𝑧𝑖.

From the coefficients 𝐶𝐾,ℎ
𝑘 and 𝑆𝐾,ℎ

𝑘 , one gets the following approximation to the
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electric field 𝐸𝐾:

𝐸𝐾,ℎ(𝑡, 𝑥) ∶= 1
∣𝕋𝑑

𝐿∣
∑

𝑘∈(ℤ𝑑)∗

|𝑘|≤𝐾

1
2𝜋 ∣ 𝑘

𝐿 ∣2
𝑘
𝐿

[sin (2𝜋𝑘 ⋅ 𝑥
𝐿

) 𝐶𝐾,ℎ
𝑘 (𝑡) − cos (2𝜋𝑘 ⋅ 𝑥

𝐿
) 𝑆𝐾,ℎ

𝑘 (𝑡)] .

(III-4.23)
In our notations, the exponent ℎ denotes a phase-space discretization. With this elec-

tric field 𝐸𝐾,ℎ, one can define an approximation to the equation (III-4.19a), which reads

𝜕𝑡𝑓𝐾,ℎ(𝑡, 𝑥, 𝑣) + 𝑣 ⋅ ∇𝑥𝑓𝐾,ℎ(𝑡, 𝑥, 𝑣) + 𝐸𝐾,ℎ(𝑡, 𝑥) ⋅ ∇𝑣𝑓𝐾,ℎ(𝑡, 𝑥, 𝑣) = 0, (VP𝐾,ℎ)

𝑓𝐾,ℎ(0, 𝑥, 𝑣) = 𝑓0(𝑥, 𝑣). (III-4.24a)

Bearing in mind that we are trying to obtain a particle method, the sums in (III-4.22)
suggest to have a particle corresponding to each 𝑗. We then have 𝑃 = |𝐽| = |𝐽1| × ⋯ ×
|𝐽2𝑑| particles in total. For each 𝑝 = 1, … , 𝑃, we can find a unique index 𝑗 ∈ 𝐽 such
that (𝑥𝑝, 𝑣𝑝) ∶= 𝑧𝑗. The name “Weighted Particle method” stems from the fact that we
can understand 𝑓0(𝑧𝑗)𝑤𝑗 in (III-4.22) as the weight 𝛽𝑝 of the particle numbered 𝑗 (or
equivalently, the particle labelled 𝑝). Finally, we can define the characteristics of equation
(VP𝐾,ℎ) as:

⎧{{
⎨{{⎩

𝑑𝑋𝐾
𝑝 (𝑡)
𝑑𝑡

= 𝑉 𝐾
𝑝 (𝑡), 𝑋𝐾

𝑝 (0) = 𝑥𝑝

𝑑𝑉 𝐾
𝑝 (𝑡)
𝑑𝑡

= 𝐸𝐾,ℎ(𝑡, 𝑋𝐾
𝑝 (𝑡)), 𝑉 𝐾

𝑝 (0) = 𝑣𝑝

𝑝 = 1, … , 𝑃 . (III-4.25)

The notations for these characteristics are deliberately distinct from those defined in
(III-4.20) in order to distinguish them easily.

III-4.2.2 Time integration

We now have only a finite number of particles to follow, and their time evolution is
defined by (III-4.25) which is an Ordinary Differential Equation (ODE). Therefore, inte-
grating the ODE over [0, 𝑡] gives the characteristics at time 𝑡. The problem of integrating
numerically an ODE has been thoroughly studied and many numerical schemes exist.

Let 𝑁𝑡 ∈ ℕ, we consider a uniform time-discretization 𝑡𝑛 = 𝑛Δ𝑡, 0 ≤ 𝑛 ≤ 𝑁𝑡, of
stepsize Δ𝑡 > 0. We let 𝑇 ∶= 𝑁𝑡Δ𝑡. The ODE (III-4.25) is written as a first-order ODE,
but it can be easily rewritten as a second-order ODE. Therefore, in order to integrate
numerically (III-4.25), one can choose a time integration scheme to solve either first-order
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or second-order ODEs. We suppose the time integration scheme is globally of order 𝛾. As
an example, we could take the explicit Euler method which is of order 1, or Runge-Kutta
methods whose order depend on the coefficients. It would also be possible to use splitting
methods in order to integrate (III-4.25).

Note that (III-4.25) exhibits a Hamiltonian structure since 𝐸𝐾,ℎ = ∇𝑥Φ𝐾,ℎ[𝑓𝐾,ℎ]
where 𝑓𝐾,ℎ is the solution to (VP𝐾,ℎ) and where

Φ𝐾,ℎ[𝑓𝐾,ℎ](𝑡, 𝑥) ∶= −1
∣𝕋𝑑

𝐿∣
∑

𝑘∈(ℤ𝑑)∗

|𝑘|≤𝐾

1
4𝜋2 ∣ 𝑘

𝐿 ∣2
[cos (2𝜋𝑘 ⋅ 𝑥

𝐿
) 𝐶𝐾,ℎ

𝑘 (𝑡) + sin (2𝜋𝑘 ⋅ 𝑥
𝐿

) 𝑆𝐾,ℎ
𝑘 (𝑡)] .

Therefore, we may benefit from using a symplectic time integrator. Such time integration
schemes have also been studied thoroughly, we can cite for instance [124, 77, 66].

For the numerical results that we will present in Section III-4.4, we have chosen a
symplectic, 3-stage, explicit, Runge-Kutta-Nyström scheme of order 4. Its Butcher tableau
is given in [66, p. 327]. For higher-order symplectic integrators, we refer to [143] or more
recently to [38].

Once we have applied our favorite time integration scheme to the particle numbered
𝑝 ∈ {1, … , 𝑃}, we obtain an approximation to the solution (𝑋𝐾

𝑝 (𝑡𝑛), 𝑉 𝐾
𝑝 (𝑡𝑛))𝑝=1,…,𝑃 of

(III-4.25) . We will denote this approximation by

𝑋𝐾,𝑛
𝑝 , 𝑉 𝐾,𝑛

𝑝 .

These are the approximate characteristics that we will compute in practice. Finally, our
method can be summed up via Algorithm 1.

III-4.3 Summary of the Weighted Particle method

The Weighted Particle method simply consists in applying the ideas discussed above
in Section III-4.2. That is, for a given 𝑘, we have to compute the approximate coefficients
𝐶𝐾,ℎ

𝑘 and 𝑆𝐾,ℎ
𝑘 via quadratures as written in (III-4.22). This has a complexity 𝒪(𝑃) where

𝑃 is the total number of particles. Then we have to do this for all 𝑘 ∈ (ℤ𝑑)∗ such that
|𝑘| ≤ 𝐾, in order to compute the approximate electric field 𝐸𝐾,ℎ as defined by (III-4.23).
This amounts to computing 𝒪(𝐾𝑑) times the coefficients 𝐶𝐾,ℎ

𝑘 , 𝑆𝐾,ℎ
𝑘 , once for each 𝑘.

When this is done and the coefficients 𝐶𝐾,ℎ
𝑘 , 𝑆𝐾,ℎ

𝑘 are stored in memory, the computation
of the electric field 𝐸𝐾,ℎ given by (III-4.23) can be done in 𝒪(𝐾𝑑) for each particle. In
order to update the position and velocity of all particles, one needs to compute the electric
field for each one of them. This yields a complexity of 𝒪(𝑃𝐾𝑑) for each timestep. Then,
we can compute the approximate characteristics via a time integration scheme.
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Algorithm 1 Weighted Particle Method
Require:

— 𝑓0: initial distribution
— The compact intervals 𝐼𝑑+1, … , 𝐼2𝑑.
— time integration scheme (specifying the timestep Δ𝑡 and the number of timesteps

𝑁𝑡)
— Quadrature rule for each dimension (specifying, for each dimension 𝑖 = 1, … , 2𝑑, the

number of nodes 𝑁𝑖+1, their locations {𝑧𝑗
𝑖 }𝑗=0,…,𝑁𝑖

, and their weights {𝑤𝑗
𝑖}𝑗=0,…,𝑁𝑖

)
— 𝐾: the truncation parameter
𝑃 = (𝑁1 + 1) × ⋯ × (𝑁2𝑑 + 1). (Total number of particles)
x[p], v[p], 𝛽[p] ← (𝑥𝑝, 𝑣𝑝, 𝛽𝑝), 𝑝 = 1, … , 𝑃 . (Initial positions, velocities, and weights)
for 𝑛 = 0, … , 𝑁𝑡 do

𝑡𝑛 = 𝑛Δ𝑡
for all stages of the time integration over a timestep do

Use NUFFT to compute approximate coefficients 𝐶𝐾,ℎ
𝑘 , 𝑆𝐾,ℎ

𝑘 for |𝑘| ≤ 𝐾
Update x, v with (III-4.25) by using (III-4.23).
if Last stage of timestep then

Compute Observables (e.g. electrical energy, momentum, total energy).
end if

end for
end for

However, the complexity of order 𝒪(𝑃𝐾𝑑) may not be satisfying with many dimen-
sions, even with 𝐾 small. To reduce this, we can use the Non-Uniform Fast Fourier
Transform (NUFFT). Roughly put, the NUFFT is an FFT on an upscaled grid and
the non-uniform data is interpolated to this grid. The idea is to notice that Equations
(III-4.22) and (III-4.23) are (inverse) Fourier transforms. Leveraging the power of the
usual FFT, the cost to compute the Fourier transform corresponding to (III-4.22) can be
𝒪(𝑃 + 𝐾𝑑 log 𝐾𝑑). The cost to compute the inverse Fourier transform corresponding to
(III-4.23) can be 𝒪(𝐾𝑑 + 𝑃 log 𝑃). Finally, using NUFFT, the global cost for each update
of all positions and velocities is 𝒪(𝑃 log 𝑃 + 𝐾𝑑 log 𝐾𝑑). See [11] and references therein
for details about the complexity reductions of NUFFT.

Moreover, it is also possible to specify a desired numerical tolerance and to choose
NUFFT parameters so that the relative error for each Fourier coefficient does not exceeed
the numerical tolerance. For all the numerical results presented here, this numerical tol-
erance has been set to 10−12. Following the notation of [11], let 𝜀∞ the maximal relative
error for the (inverse) NUFFT. Then 𝐶𝐾,ℎ

𝑘 is known up to an error of the order 𝑃𝜀∞,
and the electric field is known up to an error of the order 𝑃𝐾𝑑𝜀∞. By choosing a small
numerical tolerance, 𝜀∞ get smaller than the given tolerance, and the error 𝑃𝐾𝑑𝜀∞ can
get negligible when compared to other error terms.

The basic idea of this scheme had already been given in [13]. However the algorithm
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proposed in the referenced paper, named “Weighted Particle code”, imposes a regular
lattice, does not consider Fourier modes other than 𝑘 = ±1, imposes a normalization con-
dition on the particle weights, and is only used to study the magnetization of the 𝑁-body
simulation in the Hamiltonian Mean-Field framework. Finally, no proof of convergence of
the algorithm is given, and the time integration scheme is not discussed. We do not have
such restrictions here. Our proposed algorithm thus appears to be an extension of the
“Weighted Particle code” from [13], and it is guaranteed to converge by Theorem III.2.

It can also be seen as an improvement of the grid-free method presented in [141]: in
that work the authors use a smoothed Green kernel, and the rectangle rule to approximate
integrals. We allow other types of quadratures here.

Finally, it can be seen as an application to the Vlasov-Poisson system of the method
presented in [57], where the authors use the Weighted Particle method to approximate
the solution to convection-diffusion equations. Our method could also be understood as a
Vortex method with a Fourier regularization of the Green kernel.

We can find such approach to the Vlasov equations via the Fourier kernel mentioned
in papers related to the Vlasov-HMF models – such as [33, 4] – but no link to the general
Poisson framework is discussed. A similar idea has been proposed in [120] to approximate
the collision operator of the Boltzmann equation, called the Fourier-Galerkin spectral
method.

The approach presented here is closely related to the Particle-In-Fourier method (PIF),
see [111]. In the PIF method the charge density 𝜌 is approximated as a sum of shape func-
tions, which is similar to what is done in the Cloud-In-Cell method. The authors proposed
Gaussian shapes as a natural choice, but one could argue that this is pretty arbitrary. Our
Weighted Particle method does not require shape functions, and can compute 𝜌 exactly up
to the quadrature error. The PIF method also makes use of the Non-Uniform Fast Fourier
Transform, so our method is not computationally worse than PIC or PIF. Finally, some
ideas leading to the Weighted Particle method are very different from the PIC or PIF
approach. In particular we do not seek an approximate solution as a sum of Dirac masses
or shape functions, which is a simplifying assumption in PIC and PIF methods: in WPM
this representation of the solution is simply a consequence of the quadrature rules, hence
the Dirac masses appear naturally as a consequence of the quadrature dirscretization. In
our numerical examples, we use the library FINUFFT.jl, described in [12, 11].

To be coherent with the paper [13] which first proposed the basic ideas presented here,
we name our method “Weighted Particle method” (abbreviated WPM).
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III-4.3.1 Convergence of the Weighted Particle method

The following result gives an estimate on how the numerical approximations of the
characteristics of (III-4.19a) – with our notations, 𝑋𝐾,𝑛

𝑝 and 𝑉 𝐾,𝑛
𝑝 – approach the true

characteristics of the Vlasov-Poisson equation (III-2.2a) – with our notations, 𝑋(𝑡𝑛; 0, 𝑥𝑝, 𝑣𝑝)
and 𝑉 (𝑡𝑛; 0, 𝑥𝑝, 𝑣𝑝). We recall that the quantity 𝛾 is the global order of the time-integration
scheme used, and 𝑞𝑖 is the order of the quadrature rule along dimension 𝑖.

Theorem III.2: Convergence of the Weighted Particle method

Let 𝑗 ∈ ℕ such that 𝑗 ≥ 1 + max𝑖 𝑞𝑖, and 𝜈, 𝑟, 𝛼 ∈ ℕ such that 𝜈 + 𝑗 > 𝑑/2,
𝑟 ≥ max (3(𝜈 + 𝑗), (𝑗 − 1)(𝑑 + 1)), 𝛼 ≥ 2(𝑟 + 𝑑). Let 𝐾 ∈ ℕ, and assume 𝑓0 ∈ ℋ𝑟+𝛼

𝜈+𝑗 .
Then there exists a constant 𝐶 > 0 such that the following holds: for 𝛿 ≥ 0, define
finite intervals 𝐼𝑑+1 ∶= [𝑎1, 𝑏1], … , 𝐼2𝑑 = [𝑎𝑑, 𝑏𝑑] and 𝐼𝑣 ∶= 𝐼𝑑+1 × ⋯ × 𝐼2𝑑 such that

||𝑓0||ℋ0
𝜈(𝕋𝑑

𝐿×(ℝ𝑑\𝐼𝑣)) ≤ 𝛿.

Then for all 𝐾 ∈ ℕ∗, and 𝑛 = 1, … , 𝑁𝑡

max
𝑝=1,…,𝑃

(∣𝑋𝐾,𝑛
𝑝 − 𝑋(𝑡𝑛; 0, 𝑥𝑝, 𝑣𝑝)∣ + ∣𝑉 𝐾,𝑛

𝑝 − 𝑉 (𝑡𝑛; 0, 𝑥𝑝, 𝑣𝑝)∣)

≤ 𝐶 (𝐾𝑑 [𝛿 + 𝐾𝛾+1Δ𝑡𝛾 +
2𝑑

∑
𝑖=1

𝐾𝑞𝑖Δ𝑧𝑞𝑖
𝑖 ] + 1

(1 + 𝐾)𝛼+1
2 −𝑑

)
(III-4.26)

where 𝐶 is independent of 𝑛, Δ𝑡, Δ𝑧𝑖, 𝐾.

The proof of this result relies on the following inequality:

|𝑋𝐾,𝑛
𝑝 − 𝑋(𝑡𝑛; 0, 𝑥𝑝, 𝑣𝑝)| + |𝑉 𝐾,𝑛

𝑝 − 𝑉 (𝑡𝑛; 0, 𝑥𝑝, 𝑣𝑝)|

≤ |𝑋𝐾,𝑛
𝑝 − 𝑋𝐾

𝑝 (𝑡𝑛)| + |𝑉 𝐾,𝑛
𝑝 − 𝑉 𝐾

𝑝 (𝑡𝑛)|

+ |𝑋𝐾
𝑝 (𝑡𝑛) − 𝑋𝐾(𝑡𝑛; 0, 𝑥𝑝, 𝑣𝑝)| + |𝑉 𝐾

𝑝 (𝑡𝑛) − 𝑉 𝐾(𝑡𝑛; 0, 𝑥𝑝, 𝑣𝑝)|

+ |𝑋𝐾(𝑡𝑛; 0, 𝑥𝑝, 𝑣𝑝) − 𝑋(𝑡𝑛; 0, 𝑥𝑝, 𝑣𝑝)| + |𝑉 𝐾(𝑡𝑛; 0, 𝑥𝑝, 𝑣𝑝) − 𝑉 (𝑡𝑛; 0, 𝑥𝑝, 𝑣𝑝)|
(III-4.27)

Remark III.7

The condition ||𝑓0||ℋ0
𝜈(𝕋𝑑

𝐿×(ℝ𝑑\𝐼𝑣)) ≤ 𝛿 means that, for a given 𝛿 > 0, we choose 𝐼𝑣

large enough so that most of the weighted 𝕃2 mass of 𝑓0 is inside the domain 𝕋𝑑 × 𝐼𝑣.
The motivation behind this condition can be roughly stated as: “the quadrature rules
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are not set on domains where 𝑓0 is negligible (up to an error of order 𝛿)”.

Some comments are in order about the error estimate (III-4.26). Intuitively, we would
like to have 𝐾 large so that the system (III-4.19) approximates well the system (III-2.2).
However, the error estimate “explodes” as 𝐾 → +∞ if Δ𝑡 and Δ𝑧𝑖 are fixed. This creates
a CFL-like condition, not between Δ𝑡 and Δ𝑧𝑖 as a usual CFL condition would, but
between 𝐾 and Δ𝑡, Δ𝑧𝑖. In other words, it is possible to have 𝐾 large in the Weighted
Particle Method, only under the condition that 𝐾Δ𝑡 and 𝐾Δ𝑧𝑖 remain bounded. This
imposes the following bounds: Δ𝑡, Δ𝑧𝑖 ≤ 𝐶/𝐾 for some constant 𝐶 > 0.

The error estimate (III-4.26) is between the true and approximate characteristics. One
may be interested in the error between the exact electric field evaluated at the value of the
exact characteristics, and the approximate electric field at the value of the approximate
characteristics. Using results proven in Section III-5, we get the following corollary:

Corollary III.1

Under the assumptions of Theorem III.2,

∣𝐸(𝑡𝑛, 𝑋(𝑡𝑛, 0, 𝑥𝑝, 𝑣𝑝)) − 𝐸𝐾(𝑡𝑛, 𝑋𝐾,𝑛
𝑝 )∣ ≤ 𝐶 ∣𝑋𝐾,𝑛

𝑝 − 𝑋(𝑡𝑛; 0, 𝑥𝑝, 𝑣𝑝)∣ .

Proof. It is rather straightforward using results proven later. We have

∣𝐸(𝑡𝑛, 𝑋(𝑡𝑛; 0, 𝑥𝑝, 𝑣𝑝)) − 𝐸𝐾(𝑡𝑛, 𝑋𝐾,𝑛
𝑝 )∣

≤ ∣𝐸(𝑡𝑛, 𝑋(𝑡𝑛; 0, 𝑥𝑝, 𝑣𝑝)) − 𝐸(𝑡𝑛, 𝑋𝐾,𝑛
𝑝 )∣ + ∣𝐸(𝑡𝑛, 𝑋𝐾,𝑛

𝑝 ) − 𝐸𝐾(𝑡𝑛, 𝑋𝐾,𝑛
𝑝 )∣ .

We first note that, by continuity, 𝑋([0, 𝑇 ]; 0, 𝑥𝑝, 𝑣𝑝) is a compact set. Hence, using the
error estimate (III-4.26), 𝑋𝐾,𝑛

𝑝 also belongs to a compact set for all 𝑛, and so does
𝑋(𝑡𝑛; 0, 𝑥𝑝, 𝑣𝑝) − 𝑋𝐾,𝑛

𝑝 . Moreover, 𝐸 is differentiable with respect to the space variable
𝑥 as proven in Proposition III.4, thus there exists a constant 𝐶 > 0 so that

∣𝐸(𝑡𝑛, 𝑋(𝑡𝑛; 0, 𝑥𝑝, 𝑣𝑝)) − 𝐸(𝑡𝑛, 𝑋𝐾,𝑛
𝑝 )∣ ≤ 𝐶 ∣𝑋(𝑡𝑛; 0, 𝑥𝑝, 𝑣𝑝) − 𝑋𝐾,𝑛

𝑝 ∣ .

This can be bounded using estimate (III-4.26). It remains to estimate the quantity

∣𝐸(𝑡𝑛, 𝑋𝐾,𝑛
𝑝 ) − 𝐸𝐾(𝑡𝑛, 𝑋𝐾,𝑛

𝑝 )∣ . (III-4.28)

With the notations introduced in Proposition III.3, we have 𝐸 = 𝐸[𝑓] and 𝐸𝐾 = 𝐸𝐾[𝑓𝐾].
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This Proposition states that if ‖𝑓 − 𝑓𝐾‖2
ℋ0

𝜈
≤ 𝐶

(1+𝐾)𝛼 for some 𝐶 > 0, then

∣𝐸[𝑔](𝑡, 𝑥) − 𝐸𝐾[ℎ](𝑡, 𝑥)∣ ≤ 𝐶
(1 + 𝐾)𝛼+1

2 −𝑑
≤ ∣𝑋(𝑡𝑛; 0, 𝑥𝑝, 𝑣𝑝) − 𝑋𝐾,𝑛

𝑝 ∣ . (III-4.29)

However, Proposition III.2 yields the desired bound on ‖𝑓 − 𝑓𝐾‖2
ℋ0

𝜈
, which finishes the

proof.

We recall that (𝑋𝐾
𝑝 (𝑡), 𝑉 𝐾

𝑝 (𝑡))𝑝 are the solutions to (III-4.25), that (𝑋𝐾(𝑡; 0, 𝑥𝑝, 𝑣𝑝)
and 𝑉 𝐾(𝑡; 0, 𝑥𝑝, 𝑣𝑝)) are the solutions to (III-4.20), and that (𝑋(𝑡; 0, 𝑥𝑝, 𝑣𝑝) and 𝑉 (𝑡; 0, 𝑥𝑝, 𝑣𝑝))
are the solutions to (III-2.10).

Each line from the RHS of (III-4.27) corresponds to a different type of approximation:
the first one is the time discretization error, the second one is the phase-space discretiza-
tion error (i.e. the quadrature error), and the third one is the kernel truncature error.

Before proving our main result, which is achieved through several estimates and
lengthy computations, we illustrate numerically the efficiency of our method.

III-4.4 Numerical Simulations

In this section we will give illustrations on how the Weighted Particle method performs
on two standard one-dimensional benchmarks: Weak Landau damping and Two-Stream
instability. By one-dimensional, we mean one dimension of space and one dimension of
velocity. The time integration scheme for all simulations is a symplectic, explicit, 3-stage
Runge-Kutta-Nyström method of order 4. Its Butcher tableau was taken from [66, p.327].
The Weighted Particle method is defined by some parameters:

— the truncation parameter 𝐾.
— the quadratures in 𝑥-space and 𝑣-space. We consider the rectangle rule in both

dimensions, and let 𝑁1, 𝑁2 be the number of points for each quadrature. The total
number of particles is given as 𝑃 = 𝑁1𝑁2.

— the compact interval 𝐼𝑣 for the 𝑣-quadrature. We consider an interval 𝐼𝑣 = [−𝑣max, 𝑣max],
where 𝑣max is our parameter.

— the time step Δ𝑡 of the time integration scheme.

Remark III.8

We recall that the trapezoidal rule on the torus converges exponentially fast for 𝐶∞

functions (see [8, Sect. 5.4, Thm. 5.5]), and notice that when periodicity is considered
in the trapezoidal rule, we recover the rectangle rule. This motivates the choice of the

89



Part III, Chapter III-4 – The Weighted Particle method

rectangle rule in 𝑥-space. This argument seems not to hold a priori for the rectangle
rule in 𝑣-space because the initial conditions are not periodic per se. However, they
converge exponentially fast to zero as |𝑣| → ∞ because of the gaussian enveloppe,
hence 𝑓0(±𝑣max) ≈ 0 for 𝑣max > 0 large enough. Numerically, this is the same as if
𝑓0 vanished at ±𝑣max. Thus, we can conceptually extend 𝑓0 by periodicity from 𝐼𝑣 =
[−𝑣max, 𝑣max] to ℝ. This new function is then periodic on ℝ with period [−𝑣max, 𝑣max],
and on that interval it cannot be distinguished numerically from 𝑓0. This explains why
the rectangle rule in 𝑣-space is also appropriate, and this holds for both of our initial
conditions.

For each example, we display the time evolution of the electrical energy obtained
with the WPM method. Moreover the total energy and momentum are conserved for the
exact Vlasov-Poisson system, hence we can compare our WPM results with the exact
quantities (computed exactly at time 𝑡 = 0) and display the error. We also display the
electrical energy as well as the errors obtained with a “reference solution”: a Backward
semi-Lagrangian scheme (abbrev. BSL) which uses B-splines of degree 5 for the interpola-
tion of the remapping step, and 𝑁𝐵𝑆𝐿

1 , 𝑁𝐵𝑆𝐿
2 points. The approximate solution obtained

with BSL is an approximation to the solution of (III-2.2a). However, the Poisson equa-
tion cannot be solved exactly numerically because all Fourier modes cannot be computed.
Actually, we can only compute 𝑁𝐵𝑆𝐿

1 modes for a Fourier transform along 𝑥. The usual
Fast Fourier Transform is used to approximately solve the Poisson equation (III-2.2b) on
the first 𝑁𝐵𝑆𝐿

1 Fourier modes.
For this Backward semi-Lagrangian scheme, we have always used 𝑁𝐵𝑆𝐿

1 = 512 points
in the 𝑥-direction and 𝑁𝐵𝑆𝐿

2 = 512 points in the 𝑣-direction. Moreover, it uses the usual
Strang splitting procedure for the time integration.

We do not give the evolution of the 𝕃𝑝 norms from the WPM method because they are
all conserved with respect to time by construction of the Weighted Particle method: the

𝕃𝑝 norm of the approximate solution is (∑𝑗∈𝐽 𝑓0(𝑧𝑗)𝑝𝑤𝑗)
1/𝑝

, and this does not depend
on time. Hence the error between the true 𝕃𝑝 norms and the numerical ones are simply
the quadrature error at time 𝑡 = 0.

III-4.4.1 Computations of Observables

In our numerical examples to follow, we will monitor the behavior of some quantities
for which we know that they are either conserved or know the expected behavior. We give
in this section the expressions for some quantities, using the particle representation of the
solution.
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Electrical energy This quantity is not conserved, but we can compare its behavior
with the literature. Recall Equation (III-4.23):

𝐸𝐾,ℎ(𝑡, 𝑥) = 1
∣𝕋𝑑

𝐿∣
∑

𝑘∈(ℤ𝑑)∗

|𝑘|≤𝐾

1
2𝜋 ∣ 𝑘

𝐿 ∣2
𝑘
𝐿

[sin (2𝜋𝑘 ⋅ 𝑥
𝐿

) 𝐶𝐾,ℎ
𝑘 (𝑡) − cos (2𝜋𝑘 ⋅ 𝑥

𝐿
) 𝑆𝐾,ℎ

𝑘 (𝑡)]

In order to compute ∫
𝕋𝑑

𝐿
|𝐸𝐾,ℎ(𝑡, 𝑥)|2𝑑𝑥, we first need to compute the following integrals:

∫
𝕋𝑑

𝐿

sin (2𝜋𝑘 ⋅ 𝑥
𝐿

) sin (2𝜋𝑙 ⋅ 𝑥
𝐿

) 𝑑𝑥

= ∫
𝕋𝑑

𝐿

𝑒2𝑖𝜋𝑘⋅ 𝑥
𝐿 − 𝑒−2𝜋𝑘⋅ 𝑥

𝐿

2𝑖
𝑒2𝜋𝑙⋅ 𝑥

𝐿 − 𝑒−2𝜋𝑙⋅ 𝑥
𝐿

2𝑖
𝑑𝑥

= −1
2

∫
𝕋𝑑

𝐿

(cos (2𝜋(𝑘 + 𝑙) ⋅ 𝑥
𝐿

) − cos (2𝜋(𝑘 − 𝑙) ⋅ 𝑥
𝐿

)) 𝑑𝑥

= −|𝕋𝑑
𝐿|

2
(𝛿𝑘+𝑙,0 − 𝛿𝑘−𝑙,0) ,

∫
𝕋𝑑

𝐿

cos (2𝜋𝑘 ⋅ 𝑥
𝐿

) sin (2𝜋𝑙 ⋅ 𝑥
𝐿

) 𝑑𝑥

= ∫
𝕋𝑑

𝐿

𝑒2𝑖𝜋𝑘⋅ 𝑥
𝐿 + 𝑒−2𝜋𝑘⋅ 𝑥

𝐿

2
𝑒2𝜋𝑙⋅ 𝑥

𝐿 − 𝑒−2𝜋𝑙⋅ 𝑥
𝐿

2𝑖
𝑑𝑥

= 1
4𝑖

∫
𝕋𝑑

𝐿

(2𝑖 sin (2𝜋(𝑘 + 𝑙) ⋅ 𝑥
𝐿

) − 2𝑖 sin (2𝜋(𝑘 − 𝑙) ⋅ 𝑥
𝐿

)) 𝑑𝑥

= 0,

∫
𝕋𝑑

𝐿

cos (2𝜋𝑘 ⋅ 𝑥
𝐿

) cos (2𝜋𝑙 ⋅ 𝑥
𝐿

) 𝑑𝑥

= ∫
𝕋𝑑

𝐿

𝑒2𝑖𝜋𝑘⋅ 𝑥
𝐿 + 𝑒−2𝜋𝑘⋅ 𝑥

𝐿

2
𝑒2𝜋𝑙⋅ 𝑥

𝐿 + 𝑒−2𝜋𝑙⋅ 𝑥
𝐿

2
𝑑𝑥

= 1
4

∫
𝕋𝑑

𝐿

(2 cos (2𝜋(𝑘 + 𝑙) ⋅ 𝑥
𝐿

) + 2 cos (2𝜋(𝑘 − 𝑙) ⋅ 𝑥
𝐿

)) 𝑑𝑥

= |𝕋𝑑
𝐿|

2
(𝛿𝑘+𝑙,0 + 𝛿𝑘−𝑙,0) .
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We can now compute the electrical energy:

∫
𝕋𝑑

𝐿

|𝐸𝐾,ℎ(𝑡, 𝑥)|2𝑑𝑥

= 1
∣𝕋𝑑

𝐿∣2
∑

𝑘,𝑙∈(ℤ𝑑)∗

|𝑘|,|𝑙|≤𝐾

1
4𝜋2 ∣ 𝑘

𝐿 ∣2 ∣ 𝑙
𝐿 ∣2

𝑘 ⋅ 𝑙
𝐿2

|𝕋𝑑
𝐿|

2
[−𝐶𝐾,ℎ

𝑘 𝐶𝐾,ℎ
𝑙 (𝛿𝑘+𝑙,0 − 𝛿𝑘−𝑙,0)

+𝑆𝐾,ℎ
𝑘 𝑆𝐾,ℎ

𝑙 (𝛿𝑘+𝑙,0 + 𝛿𝑘−𝑙,0)]

= 1
∣𝕋𝑑

𝐿∣2
∑

𝑘,𝑙∈(ℤ𝑑)∗

|𝑘|,|𝑙|≤𝐾

1
4𝜋2 ∣ 𝑘

𝐿 ∣2 ∣ 𝑙
𝐿 ∣2

𝑘 ⋅ 𝑙
𝐿2

|𝕋𝑑
𝐿|

2
[−𝐶𝐾,ℎ

𝑘 𝐶𝐾,ℎ
𝑙 𝛿𝑘+𝑙,0 + 𝐶𝐾,ℎ

𝑘 𝐶𝐾,ℎ
𝑙 𝛿𝑘−𝑙,0

+𝑆𝐾,ℎ
𝑘 𝑆𝐾,ℎ

𝑙 𝛿𝑘+𝑙,0 + 𝑆𝐾,ℎ
𝑘 𝑆𝐾,ℎ

𝑙 𝛿𝑘−𝑙,0]

= 1
∣𝕋𝑑

𝐿∣2
∑

𝑘∈(ℤ𝑑)∗

|𝑘|≤𝐾

1
4𝜋2 ∣ 𝑘

𝐿 ∣2 ∣−𝑘
𝐿 ∣2

𝑘 ⋅ (−𝑘)
𝐿2

|𝕋𝑑
𝐿|

2
[−𝐶𝐾,ℎ

𝑘 𝐶𝐾,ℎ
−𝑘 + 𝑆𝐾,ℎ

𝑘 𝑆𝐾,ℎ
−𝑘 ]

+ 1
∣𝕋𝑑

𝐿∣2
∑

𝑘∈(ℤ𝑑)∗

|𝑘|≤𝐾

1
4𝜋2 ∣ 𝑘

𝐿 ∣2 ∣ 𝑘
𝐿 ∣2

𝑘 ⋅ 𝑘
𝐿2

|𝕋𝑑
𝐿|

2
[𝐶𝐾,ℎ

𝑘 𝐶𝐾,ℎ
𝑘 + 𝑆𝐾,ℎ

𝑘 𝑆𝐾,ℎ
𝑘 ]

= 1
∣𝕋𝑑

𝐿∣2
∑

𝑘∈(ℤ𝑑)∗

|𝑘|≤𝐾

1
4𝜋2 ∣ 𝑘

𝐿 ∣2 ∣−𝑘
𝐿 ∣2

|𝑘|2

𝐿2
|𝕋𝑑

𝐿|
2

[(𝐶𝐾,ℎ
𝑘 )2 + (𝑆𝐾,ℎ

𝑘 )2]

+ 1
∣𝕋𝑑

𝐿∣2
∑

𝑘∈(ℤ𝑑)∗

|𝑘|≤𝐾

1
4𝜋2 ∣ 𝑘

𝐿 ∣2 ∣ 𝑘
𝐿 ∣2

|𝑘|2

𝐿2
|𝕋𝑑

𝐿|
2

[(𝐶𝐾,ℎ
𝑘 )2 + (𝑆𝐾,ℎ

𝑘 )2]

= 1
∣𝕋𝑑

𝐿∣
∑

𝑘∈(ℤ𝑑)∗

|𝑘|≤𝐾

1
4𝜋2 ∣ 𝑘

𝐿 ∣2
[(𝐶𝐾,ℎ

𝑘 )2 + (𝑆𝐾,ℎ
𝑘 )2]

III-4.4.2 Weak Landau damping

Description It is for example a test case in [131, p.54, Sect.4.4.2]. The initial condition
writes:

𝑓0(𝑥, 𝑣) = (1 + 𝛼 cos(𝑘𝑥𝑥)) exp(−𝑣2/2) 1√
2𝜋

, 𝑥 ∈ [0, 𝐿], 𝑣 ∈ [−𝑣max, 𝑣max], (III-4.30)

where 𝐿 ∶= 2𝜋/𝑘𝑥. This is one of the most famous examples. A numerical scheme has to
recover accurately the damping rate and the period between oscillations in the electrical
energy. There exists a theoretical formula giving the electrical energy for the dominating
Fourier mode (see [131, p.56]). As other modes decay much faster, this formula is a good
approximation of the exact electrical energy 𝐸𝑡ℎ

𝑒𝑙𝑒𝑐(𝑡) after a short time. For 𝑘𝑥 = 0.5, the
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formula reads

𝐸𝑡ℎ
𝑒𝑙𝑒𝑐(𝑡) ≈ 0.004 × 0.3677𝑒−0.1533𝑡 |cos(1.4156𝑡 − 0.536245)| √𝐿/2. (III-4.31)

WPM results The numerical parameters are 𝑣max = 12, 𝑘𝑥 = 0.5, 𝛼 = 0.001, Δ𝑡 = 0.1.
We have used 𝐾 = 1 and 𝐾 = 15 to compare the effects of small and large 𝐾. The results
are given in Figure III-4.1.

In the top row of each subfigure, we draw the results obtained with WPM (solid
blue curve), the expected damping rate (red dashes), and the theoretical electrical energy
of the dominating Fourier mode (purple dots). The results of BSL are also given (solid
orange curve). For times up to 𝑡 ≈ 45 (or 𝑡 ≈ 25 in the case 𝑁1 = 𝑁2 = 64), the Weighted
Particle method can recover the electrical energy with a very good accuracy. In the second
row of each subfigure, we draw the difference between the theoretical total energy and
the total energy computed from WPM or BSL. We observe that the Weighted Particle
method can recover the total energy with a very good accuracy (the difference is of order
10−10), even better than the semi-Lagrangian scheme. In the third row, we compare the
exact momentum with the momentum obtained from WPM and BSL. Here as well, the
momentum is very well recovered (the difference is of order 10−14 for the example with
the smallest number of particles), which is again better than BSL.

For this example we also observe an expected jump called the “Poincare recurrence”,
which is linked to the compact support in velocity (see [37, 131, 60]). However, we are not
able to explain the amplitude increase after the jump. The recurrence with the Weighted
Particle Method may be due to considering a quadrature rule with uniformly spaced
points. It is possible that a quadrature with non-uniformly spaced points diminishes the
effects of the Poincare recurrence, as suggested in [1, 110]. The relative 𝕃2 norm error is
of order 10−14.

We can observe on this example that the number of points 𝑁1, 𝑁2 needed to obtain
satisfying results increases with 𝐾. This was expected from the error estimate of Theorem
III.2.

III-4.4.3 Strong Landau damping

The initial condition is again given by (III-4.30). This testcase is given for example in
[123, Sect. 5.1]. The electrical energy first decreases from 𝑡 = 0 to 𝑡 ≈ 15, then increases
until 𝑡 ≈ 40, and then stabilizes. Approximate slopes for the decrease and increase in
energy can be found in the literature [37, 100].
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(b) 𝐾 = 1, 𝑁1 = 𝑁2 = 128
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(c) 𝐾 = 1, 𝑁1 = 𝑁2 = 256
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(d) 𝐾 = 15, 𝑁1 = 𝑁2 = 64
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(e) 𝐾 = 15, 𝑁1 = 𝑁2 = 128
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(f) 𝐾 = 15, 𝑁1 = 𝑁2 = 256

Figure III-4.1 – Results for the Weak Landau damping. Top row (log-scale) : Electrical
energy from WPM (resp. BSL), in blue (resp. red). Below: error between WPM (resp.
BSL) results and exact quantities, in blue (resp. red) – middle row: total energy, bottom
row: momentum.

WPM results The numerical parameters are 𝑣max = 12, 𝑘𝑥 = 0.5, 𝛼 = 0.5, Δ𝑡 = 0.1.
We have used 𝐾 = 1 and 𝐾 = 15 to compare the effects of small and large 𝐾. The results
are given in Figure III-4.2.

We can observe that the first results – with 𝑁1 = 𝑁2 = 64 and 𝐾 = 1 – are very poor.
This can a priori have two possible causes: (i) there are not enough particles, and (ii) the
number of Fourier modes chosen (here, 𝐾 = 1) is not sufficient. Looking at the results for
larger 𝑁1, 𝑁2, we deduce that the first reason seems to be the main one: the results get
better when more particles are introduced. However, with 𝐾 = 1, the results are satisfying
only until 𝑡 ≈ 10, even when a large number of particles are introduced. For 𝑡 > 10, the
WPM and BSL results have the same qualitative behavior but not quantitative. This issue
is fixed by choosing a larger 𝐾. With 𝐾 = 15, the error is first larger than for 𝐾 = 1 –
with 𝑁1, 𝑁2 = 64 – but gets much better as the number of particles increases: the WPM
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result is more satisfying than BSL up to time 𝑡 ≈ 70, when 𝐾 = 15 and 𝑁1 = 𝑁2 = 256.
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Figure III-4.2 – Results for the Strong Landau damping. Top row (log-scale) : Electrical
energy from WPM (resp. BSL), in blue (resp. red). Below: error between WPM (resp.
BSL) results and exact quantities, in blue (resp. red) – middle row: total energy, bottom
row: momentum.

III-4.4.4 Two-Stream Instability

Description

This example can be found in [131, p.57] or [53, p.1738]. Depending on the reference,
the initial condition may be different. The idea of this example in both cases is to have
two streams with opposite velocities. We will consider the formulation from [131]. The
initial condition then reads:

𝑓0(𝑥, 𝑣) = (1 + 𝛼 cos(𝑘𝑥𝑥)) 1
2
√

2𝜋
(exp(−(𝑣 − 𝑣0)2/2) + exp(−(𝑣 + 𝑣0)2/2)), (III-4.32)
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for 𝑥 ∈ [0, 2𝜋/𝑘𝑥], 𝑣 ∈ [−𝑣max, 𝑣max].

WPM results The numerical parameters are 𝛼 = 0.001, 𝑣max = 12, 𝑘𝑥 = 0.2, 𝑣0 =
3, Δ𝑡 = 0.1. We have used 𝐾 = 1 and 𝐾 = 15 to compare the effects of small and large
𝐾. The results are given in Figure III-4.3.

It is known that the Two-Stream instability first exhibits a short transition state,
followed by an instability, and then some periodic behavior. The instability rate is 0.2845.

As in the previous example, the first row of each subfigure corresponds to the electrical
energy obtained with the Weighted Particle method (solid blue curve), Backward Semi-
Lagrangian (solid orange curve), and we display the expected instability rate (red dashes).
We can observe that the instability rate is recovered accurately with both WPM and BSL.
In the second row of each subfigure, we display the error between the theoretical total
energy and the total energy obtained with WPM and BSL. The total energy is also
recovered accurately with WPM (the difference is of order 10−6), much more accurately
than with BSL. In the third row, we compare the exact momentum with the momentum
obtained from WPM and BSL. Here as well, the momentum is very well recovered (e.g.
the difference is of order 10−13 for the example with the smallest number of particles).
The relative 𝕃2 norm error is of order 10−14.

The results for this test case are all satisfying in regard to the “interesting” part,
corresponding to the instability and transition states, which happen for 𝑡 ≤ 30. The results
differ after this time. Once again, we can observe that increasing 𝐾 or (𝑁1, 𝑁2) yields
better results, closer to what is expected. For once, the results with 𝐾 = 15, 𝑁1 = 𝑁2 = 64
are not worse than the results with 𝐾 = 1, 𝑁1 = 𝑁2 = 64. This is not to be expected for
all initial conditions as can be seen from the error estimate of Theorem III.2: for given
Δ𝑡, Δ𝑧𝑖, if 𝐾 increases the error bound increases.

For all those examples we were able to recover very accurately the exact momentum,
electrical energy and total energy. Relatively few particles were needed, compared to the
usual PIC methods. As a comparison, we can cite for instance the paper [116] which uses
a Particle-In-Wavelets scheme, where 219 particles were necessary in order to obtain sat-
isfying results with a tolerable statistical noise on the Landau Damping and Two-Stream
instability examples. The authors of [37] have done some Particle-In-Cell simulations and
show that, on the Strong and Weak Landau damping examples after a short time, the sta-
tistical noise with 256 × 256 particles prevents from drawing conclusions from the results.
The method presented in [37] does not have such a problem and can predict accurately
the damping rates, but requires frequent remapping.

Moreover we have not displayed here the results of the comparison between a sym-
plectic time integrator and a non-symplectic one, but experiments show that using a
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(a) 𝐾 = 1, 𝑁1 = 𝑁2 = 64
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(b) 𝐾 = 1, 𝑁1 = 𝑁2 = 128
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(c) 𝐾 = 1, 𝑁1 = 𝑁2 = 256
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(d) 𝐾 = 15, 𝑁1 = 𝑁2 = 64
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(f) 𝐾 = 15, 𝑁1 = 𝑁2 = 256

Figure III-4.3 – Results for the Two-Stream Instability. Top row (log-scale) : Electrical
energy from WPM (resp. BSL), in blue (resp. red). Below: error between WPM (resp.
BSL) results and exact quantities, in blue (resp. red) – middle row: total energy, bottom
row: momentum.

symplectic time integrator prevents from obtaining a drift in conservative quantities (e.g.
total energy) which otherwise occurs. For this comparison, we have tested symplectic and
non-symplectic versions of a 4th order Runge-Kutta-Nyström time integrator.
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R 5
Proof of the convergence

theorem III.2

We prove in this section the convergence of Theorem III.2. The proof ends on Page
128.

The first thing to show is that the truncation of the kernel does not modify the
existence result given by Theorem III.1.

We recall that the spaces ℋ𝑟
𝜈 are defined by (III-4.1). For functions in ℋ𝑟

𝜈, we consider
the Fourier transform along the space variable 𝑥 ∈ 𝕋𝑑

𝐿 and denote this transform ℱ𝑥. Let
𝑃𝐾 be the projection on the Fourier modes with frequency |𝑘| ≤ 𝐾.

We have the following lemma:

Lemma III.2

Let 𝐾 ∈ ℕ∗, define Φ, Φ𝐾 as in (III-4.14) and (III-4.16). Then, for all 𝜈, 𝑟 ∈ ℕ, we
have

∀𝑔 ∈ ℋ𝑟
𝜈, 𝑃𝐾Φ[𝑔] = Φ𝐾[𝑔] = Φ[𝑃𝐾𝑔] (III-5.1)

and
∀𝑔 ∈ ℋ𝑟

𝜈, ||𝑃𝐾𝑔||ℋ𝑟
𝜈

≤ ||𝑔||ℋ𝑟
𝜈
. (III-5.2)

Proof. The first equality of (III-5.1) is just the definition of Φ𝐾. The second equality is
straightforward by noting that Φ𝐾[𝑔] = 𝑃𝐾Φ[𝑔], that the mapping 𝑔 ↦ Φ[𝑔] is linear,
and that the only dependance in the space variable 𝑥 of Φ[𝑔] is the dependance on 𝑥 of
𝑔. It can also be shown by computing 𝑃𝐾Φ[𝑔] and Φ[𝑃𝐾𝑔] explicitely and comparing the
expressions.

For the estimate (III-5.2), we have by the Parseval equality

||𝑃𝐾𝑔||2ℋ𝑟
𝜈

= ∑
(𝑚,𝑝,𝑞)∈(ℕ𝑑)3

|𝑝|+|𝑞|≤𝑟
|𝑚|≤𝜈

∑
𝑘∈(ℤ𝑑)∗

|𝑘|≤𝐾

∫
ℝ𝑑

|𝑣𝑚𝜕𝑞
𝑣ℱ𝑥(𝑔)(𝑘, 𝑣)𝑘𝑝|2 𝑑𝑣

≤ ∑
(𝑚,𝑝,𝑞)∈(ℕ𝑑)3

|𝑝|+|𝑞|≤𝑟
|𝑚|≤𝜈

∑
𝑘∈(ℤ𝑑)∗

∫
ℝ𝑑

|𝑣𝑚𝜕𝑞
𝑣ℱ𝑥(𝑔)(𝑘, 𝑣)𝑘𝑝|2 𝑑𝑣 = ||𝑔||2ℋ𝑟

𝜈
,
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and we recall that 𝑘𝑝 ∶= 𝑘𝑝1
1 ...𝑘𝑝𝑑

𝑑 .

It is now possible to follow step by step the proofs of [38, Thm. 5.1, Lemma 5.3], with
the estimates holding thanks to Lemma III.2, and we will obtain the following existence
result:

Proposition III.1

Let 𝐾 ∈ ℕ∗, 𝜈, 𝑟 ∈ ℕ, with 𝜈 > 𝑑/2 and 𝑟 ≥ 3𝜈. There exist constants 𝐶𝑟,𝜈 and
𝐿𝑟,𝜈 such that for all given 𝐵 > 0 and 𝑓0 ∈ ℋ𝑟+2𝜈+1

𝜈 with ||𝑓0||ℋ𝑟+2𝜈+1
𝜈

≤ 𝐵, for all
𝛼, 𝛽 ∈ [0, 1], there exists a solution 𝑓𝐾(𝑡, 𝑥, 𝑣) of the Vlasov-Poisson equation with
truncated kernel (III-4.19a)

{
𝜕𝑡𝑓𝐾 + 𝛼𝑣 ⋅ ∇𝑥𝑓𝐾 + 𝛽∇𝑥Φ𝐾[𝑓𝐾] ⋅ ∇𝑣𝑓𝐾 = 0

𝑓(0, 𝑥, 𝑣) = 𝑓0(𝑥, 𝑣)

on the interval [0, 𝑇 ] with

𝑇 ∶=
𝐶𝑟,𝜈

1 + 𝐵
,

and we have the estimate

∀𝑡 ∈ [0, 𝑇 ], ∣∣𝑓𝐾(𝑡)∣∣
ℋ𝑟+2𝜈+1

𝜈
≤ min (2𝐵, 𝑒𝐿𝑟,𝜈(1+𝐵)𝑡) ||𝑓0||ℋ𝑟+2𝜈+1

𝜈
. (III-5.3)

Moreover, for two initial conditions 𝑓0 and 𝑔0 satisfying the previous hypotheses, we
have

∀𝑡 ∈ [0, 𝑇 ], ∣∣𝑓𝐾(𝑡) − 𝑔𝐾(𝑡)∣∣
ℋ𝑟

𝜈
≤ 𝑒𝐿𝑟,𝜈(1+𝐵)𝑡||𝑓0 − 𝑔0||ℋ𝑟

𝜈
. (III-5.4)

We do not give the proof here as it would amount to copy verbatim the proof from
[38], and we refer the reader to this paper for a self-contained proof. We have the following
lemma:

Lemma III.3

Let 𝜈, 𝑟1, 𝑟2 ∈ ℕ such that 𝑟2 ≥ 𝑟1. For all 𝑓 ∈ ℋ𝑟2𝜈 , there exists a constant 𝐶 > 0
such that for all 𝑘 ∈ ℤ𝑑, and all 𝑞 ∈ ℕ𝑑 such that |𝑞| ≤ 𝑟2,

∀𝑚 ∈ ℕ𝑑, |𝑚| ≤ 𝜈, ∫
ℝ𝑑

|𝑣𝑚𝜕𝑞
𝑣ℱ𝑥(𝑓)(𝑘, 𝑣)|2 𝑑𝑣 ≤ 𝐶

(1 + |𝑘|)2(𝑟2−|𝑞|)
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and, for all 𝐾 ∈ ℕ∗,

||(𝐼 − 𝑃𝐾)𝑓||2ℋ𝑟1𝜈
≤

𝐶||𝑓||2ℋ𝑟2𝜈

(1 + 𝐾)2(𝑟2−𝑟1) .

Proof. Recall the definition of the ℋ𝑟2𝜈 norm:

||𝑓||2ℋ𝑟2𝜈
= ∑

(𝑚,𝑝,𝑞)∈(ℕ𝑑)3

|𝑝|+|𝑞|≤𝑟2
|𝑚|≤𝜈

∫
ℝ𝑑

∫
𝕋𝑑

|𝑣𝑚𝜕𝑝
𝑥𝜕𝑞

𝑣𝑓(𝑥, 𝑣)|2 𝑑𝑥𝑑𝑣

By the Parseval equality,

||𝑓||2ℋ𝑟2𝜈
= ∣𝕋𝑑

𝐿∣ ∑
(𝑚,�̃�,𝑞)∈(ℕ𝑑)3

|�̃�|+|𝑞|≤𝑟2
|𝑚|≤𝜈

∫
ℝ𝑑

∑
𝑘∈ℤ𝑑

∣ℱ𝑥 (𝑣𝑚𝜕 �̃�
𝑥𝜕𝑞

𝑣𝑓) (𝑘, 𝑣)∣2 𝑑𝑣

= ∣𝕋𝑑
𝐿∣ ∑

(𝑚,𝑞)∈(ℕ𝑑)2

|𝑞|≤𝑟2
|𝑚|≤𝜈

∑
𝑘∈ℤ𝑑

∑
�̃�∈ℕ𝑑

|�̃�|≤𝑟2−|𝑞|

(2𝜋)2|�̃�| ( 𝑘
𝐿

)
2�̃�

∫
ℝ𝑑

|𝑣𝑚𝜕𝑞
𝑣ℱ𝑥(𝑓)(𝑘, 𝑣)|2 𝑑𝑣.

(III-5.5)

We recall that with our convention, as ̃𝑝 ∈ ℕ𝑑, 𝑘, 𝐿 ∈ ℝ𝑑 we let

( 𝑘
𝐿

)
2�̃�

= ( 𝑘1
𝐿1

)
2�̃�1

… ( 𝑘𝑑
𝐿𝑑

)
2�̃�𝑑

.

A by-product of (III-5.5) is that, since the right-hand side is finite, the sum over 𝑘
is also finite for every 𝑚, 𝑞. In the sum over ̃𝑝 ∈ ℕ𝑑 with | ̃𝑝| ≤ 𝑟2 − |𝑞|, we have in
particular for each 𝑖 = 1, … , 𝑑, the term ̃𝑝 = (0, ⋯ , 0, 𝑟2 − |𝑞|, 0, ⋯ , 0) where only the
𝑖 − 𝑡ℎ coordinate is nonzero and its value is 𝑟2 − |𝑞|. There is as well ̃𝑝 = (0, … , 0). Thus,
for some constant 𝐶 that does not depend on 𝑘,

∑
�̃�∈ℕ𝑑

|�̃�|≤𝑟2−|𝑞|

(2𝜋)2|�̃�| ( 𝑘
𝐿

)
2�̃�

≥ 𝐶 (1 +
𝑑

∑
𝑖=1

𝑘2(𝑟2−|𝑞|)
𝑖 ) .

The right-hand side of (III-5.5) being finite for every 𝑚, 𝑞, we then have

(1 +
𝑑

∑
𝑖=1

𝑘2(𝑟2−|𝑞|)
𝑖 ) ∫

ℝ𝑑

|𝑣𝑚𝜕𝑞
𝑣ℱ𝑥(𝑓)(𝑘, 𝑣)|2 𝑑𝑣 ≤ 𝐶,
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for some 𝐶 large enough. Finally, for all |𝑞| ≤ 𝑟2, |𝑚| ≤ 𝜈, we have

∫
ℝ𝑑

|𝑣𝑚𝜕𝑞
𝑣ℱ𝑥(𝑓)(𝑘, 𝑣)|2 𝑑𝑣 ≤ 𝐶

1 + ∑𝑑
𝑖=1 𝑘2(𝑟2−|𝑞|)

𝑖

≤ 𝐶
(1 + |𝑘|)2(𝑟2−|𝑞|) ,

where the last equality is a consequence of Jensen’s inequality. This shows the first estimate
we claim.

We now proceed to showing the second estimate. Coming back to (III-5.5), let ̃𝑝 = 𝑝+𝑠,
where 𝑝, 𝑠 ∈ ℕ𝑑 are such that |𝑠| ≤ 𝑟2 − 𝑟1 and |𝑝| ≤ 𝑟1 − |𝑞|. A given value of ̃𝑝 may
be obtained by several combinations of 𝑠 and 𝑝. However, the maximal number 𝑀 of
combinations yielding the same ̃𝑝 is finite and depends only on 𝑑, 𝑟1, 𝑟2. Therefore,

||𝑓||2ℋ𝑟2𝜈
≥

∣𝕋𝑑
𝐿∣

𝑀
∑

(𝑚,𝑞)∈(ℕ𝑑)2

|𝑞|≤𝑟2
|𝑚|≤𝜈

∑
𝑘∈ℤ𝑑

∑
𝑠∈ℕ𝑑

|𝑠|≤𝑟2−𝑟1

(2𝜋)2|𝑠| ( 𝑘
𝐿

)
2𝑠

∑
𝑝∈ℕ𝑑

|𝑝|≤𝑟1−|𝑞|

(2𝜋)2|𝑝| ( 𝑘
𝐿

)
2𝑝

× ∫
ℝ𝑑

|𝑣𝑚𝜕𝑞
𝑣ℱ𝑥(𝑓)(𝑘, 𝑣)|2 𝑑𝑣

In the sum over 𝑠 ∈ ℕ𝑑 with |𝑠| ≤ 𝑟2 − 𝑟1, we have in particular for each 𝑖 = 1, … , 𝑑
the term 𝑠 = (0, ⋯ , 0, 𝑟2 − 𝑟1, 0, ⋯ , 0) where only the 𝑖 − 𝑡ℎ coordinate is nonzero and its
value is 𝑟2 − 𝑟1. Thus,

||𝑓||2ℋ𝑟2𝜈
≥

∣𝕋𝑑
𝐿∣

𝑀
∑

(𝑚,𝑞)∈(ℕ𝑑)2

|𝑞|≤𝑟2
|𝑚|≤𝜈

∑
𝑘∈ℤ𝑑

(
𝑑

∑
𝑖=1

[2𝜋 𝑘𝑖
𝐿𝑖

]
2(𝑟2−𝑟1)

) ∑
𝑝∈ℕ𝑑

|𝑝|≤𝑟1−|𝑞|

(2𝜋)2|𝑝| ( 𝑘
𝐿

)
2𝑝

× ∫
ℝ𝑑

|𝑣𝑚𝜕𝑞
𝑣ℱ𝑥(𝑓)(𝑘, 𝑣)|2 𝑑𝑣.

Again, by the Jensen inequality, there exists a constant 𝐶1 > 0 such that

𝑑
∑
𝑖=1

[2𝜋 𝑘𝑖
𝐿𝑖

]
2(𝑟2−𝑟1)

≥ 𝐶1|𝑘|2(𝑟2−𝑟1).

Hence

||𝑓||2ℋ𝑟2𝜈
≥ 𝐶 ∑

(𝑚,𝑞)∈(ℕ𝑑)2

|𝑞|≤𝑟2
|𝑚|≤𝜈

∑
𝑘∈ℤ𝑑

|𝑘|2(𝑟2−𝑟1) ∑
𝑝∈ℕ𝑑

|𝑝|≤𝑟1−|𝑞|

(2𝜋)2|𝑝| ( 𝑘
𝐿

)
2𝑝

∫
ℝ𝑑

|𝑣𝑚𝜕𝑞
𝑣ℱ𝑥(𝑓)(𝑘, 𝑣)|2 𝑑𝑣,

where we let 𝐶 ∶= 𝐶1
∣𝕋𝑑

𝐿∣
𝑀 .
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In the sum over 𝑞, we can drop the terms corresponding to |𝑞| > 𝑟1 because it yields
an empty set {𝑝 ∈ ℕ𝑑 ∶ |𝑝| ≤ 𝑟1 − |𝑞|}. Thus,

||𝑓||2ℋ𝑟2𝜈
≥ 𝐶 ∑

(𝑚,𝑞)∈(ℕ𝑑)2

|𝑞|≤𝑟1
|𝑚|≤𝜈

∑
𝑘∈ℤ𝑑

|𝑘|2(𝑟2−𝑟1) ∑
𝑝∈ℕ𝑑

|𝑝|≤𝑟1−|𝑞|

(2𝜋)2|𝑝| ( 𝑘
𝐿

)
2𝑝

∫
ℝ𝑑

|𝑣𝑚𝜕𝑞
𝑣ℱ𝑥(𝑓)(𝑘, 𝑣)|2 𝑑𝑣.

(III-5.6)
Now, if |𝑘| > 𝐾, then ℕ ∋ |𝑘|2 > 𝐾2 ≥ 1 + 𝐾2. As we want an estimate that depends on
(1 + 𝐾)2(𝑟2−𝑟1) and not on (1 + 𝐾2)𝑟2−𝑟1 , we use the following inequality:

(𝐾 − 1)2 + (𝐾 + 1)2 = 2(1 + 𝐾2) ⟹ (1 + 𝐾)2 ≤ 2(1 + 𝐾2).

We truncate the sum over 𝑘 ∈ ℤ𝑑 to |𝑘| > 𝐾 in (III-5.6), and we get

||𝑓||2ℋ𝑟2𝜈
≥ 𝐶 ((1 + 𝐾)2

2
)

𝑟2−𝑟1

∑
(𝑚,𝑞)∈(ℕ𝑑)2

|𝑞|≤𝑟1
|𝑚|≤𝜈

∑
𝑘∈ℤ𝑑

|𝑘|>𝐾

∑
𝑝∈ℕ𝑑

|𝑝|≤𝑟1−|𝑞|

(2𝜋)2|𝑝| ( 𝑘
𝐿

)
2𝑝

∫
ℝ𝑑

|𝑣𝑚𝜕𝑞
𝑣ℱ𝑥(𝑓)(𝑘, 𝑣)|2 𝑑𝑣.

Finally we can compare this expression to the one we had in (III-5.5), and obtain

||𝑓||2ℋ𝑟2𝜈
≥ 𝐶(1 + 𝐾)2(𝑟2−𝑟1) ||(𝐼 − 𝑃𝐾)𝑓||2ℋ𝑟1𝜈

.

We now have bounds for 𝑓 and 𝑓𝐾, uniform in 𝐾, so we are able to obtain an estimate
on their difference.

Proposition III.2

Let 𝜈, 𝑟 ∈ ℕ, with 𝜈 > 𝑑/2, 𝑟 ≥ 3𝜈, and 𝛼 ≥ 2𝜈+1. Let 𝑓 be the solution to the Vlasov-
Poisson equation (III-2.2a), and 𝑓𝐾 be the solution to the Vlasov-Poisson equation
with truncated kernel (III-4.19a), both with the same initial condition 𝑓0 ∈ ℋ𝑟+𝛼

𝜈 ,
such that ||𝑓0||ℋ𝑟+𝛼

𝜈
≤ 𝐵 for some 𝐵 > 0. Then, there exists a constant 𝐶 > 0 such

that for all 𝐾 ∈ ℕ∗ and all 𝑡 ∈ [0, 𝑇 ],

∣∣(𝑓 − 𝑓𝐾)(𝑡)∣∣2
ℋ𝑟

𝜈
≤ 𝐶

(1 + 𝐾)𝛼 (III-5.7)

Proof. We follow the end of the proof of Theorem 5.1 from [38].
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By taking the difference (III-2.2a) - (III-4.19a), we obtain

𝜕𝑡(𝑓 − 𝑓𝐾) + 𝑣 ⋅ ∇𝑥(𝑓 − 𝑓𝐾) − ∇𝑥Φ ⋅ ∇𝑣(𝑓 − 𝑓𝐾) = ∇𝑥Φ[𝑃𝐾𝑓𝐾 − 𝑓] ⋅ ∇𝑣𝑓𝐾.

We have by previous estimates

∀𝑡 ∈ [0, 𝑇 ], {
||𝑓(𝑡)||ℋ𝑟+𝛼

𝜈
≤ 𝐶(𝑡, 𝑟, 𝜈, 𝐵)||𝑓0||ℋ𝑟+𝛼

𝜈

||𝑓𝐾(𝑡)||ℋ𝑟+𝛼
𝜈

≤ 𝐶(𝑡, 𝑟, 𝜈, 𝐵)||𝑓0||ℋ𝑟+𝛼
𝜈

. (III-5.8)

Since 𝛼 ≥ 2𝜈 + 1, Lemma 5.3 from [38], gives for all 𝑡 ∈ [0, 𝑇 ]

||(𝑓 − 𝑓𝐾)(𝑡)||2ℋ𝑟
𝜈

≤ ||(𝑓 − 𝑓𝐾)(0)||2ℋ𝑟
𝜈

+ 𝐶 ∫
𝑡

0
(1 + ||𝑓(𝜎)||ℋ𝑟

𝜈
) ∣∣(𝑓 − 𝑓𝐾)(𝜎)∣∣2

ℋ𝑟
𝜈

𝑑𝜎

+ 2 ∫
𝑡

0
∣∣∇𝑥Φ[𝑃𝐾𝑓𝐾 − 𝑓] ⋅ ∇𝑣𝑓𝐾(𝜎)∣∣

ℋ𝑟
𝜈

∣∣(𝑓 − 𝑓𝐾)(𝜎)∣∣
ℋ𝑟

𝜈
𝑑𝜎

(III-5.9)
We have (we skip the details since they are given in [38])

∣∣𝑣𝑚𝜕𝑝
𝑥𝜕𝑞

𝑣 (∇𝑥Φ[𝑃𝐾𝑓𝐾 − 𝑓] ⋅ ∇𝑣𝑓𝐾)∣∣
𝕃2

≤ 𝐶𝑟,𝜈||𝑓||ℋ𝑟+2𝜈+1
𝜈

||𝑃𝐾𝑓𝐾 − 𝑓||ℋ𝑟
𝜈
. (III-5.10)

Moreover, from the decomposition 𝑃𝐾𝑓𝐾 − 𝑓 = 𝑃𝐾(𝑓𝐾 − 𝑓) + (𝑃 𝐾 − 𝐼)𝑓 we have,
using Lemma III.3,

||𝑃𝐾𝑓𝐾 − 𝑓||ℋ𝑟
𝜈

≤ ||𝑃𝐾(𝑓𝐾 − 𝑓)||ℋ𝑟
𝜈

+ ||(𝐼 − 𝑃𝐾)𝑓||ℋ𝑟
𝜈

≤ ||𝑓𝐾 − 𝑓||ℋ𝑟
𝜈

+ ||(𝐼 − 𝑃𝐾)𝑓||ℋ𝑟
𝜈

≤ ||𝑓𝐾 − 𝑓||ℋ𝑟
𝜈

+ 𝐶
(1 + 𝐾)𝛼 . (III-5.11)

Then (III-5.9) becomes, with the help of (III-5.10),

∀𝑡 ∈ [0, 𝑇 ], ||(𝑓 − 𝑓𝐾)(𝑡)||2ℋ𝑟
𝜈

≤ ||(𝑓 − 𝑓𝐾)(0)||2ℋ𝑟
𝜈

+ 𝐶(𝑓0) ∫
𝑡

0
||(𝑓 − 𝑓𝐾)(𝜎)||2ℋ𝑟

𝜈
𝑑𝜎

+ 2𝐶𝑟,𝜈(𝑓0) ∫
𝑡

0
(||(𝑓𝐾 − 𝑓)(𝜎)||2ℋ𝑟

𝜈
+ 𝐶

(1 + 𝐾)𝛼 ) 𝑑𝜎.

(III-5.12)
Since (III-2.2b) and (III-4.19a) have the same initial condition, we obtain by the Grönwall
lemma (see Lemma II.1) the existence of a time-dependent function 𝐶, independent of 𝐾,
that depends on 𝑟, 𝜈, 𝑓0, such that

∀𝑡 ∈ [0, 𝑇 ], ∣∣(𝑓 − 𝑓𝐾)(𝑡)∣∣2
ℋ𝑟

𝜈
≤ 𝐶(𝑡)

(1 + 𝐾)𝛼 .
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Since the function 𝐶(𝑡) depends continuously on 𝑡 ∈ [0, 𝑇 ], we get the result.

Proposition III.3

Let 𝑐 ∈ ℕ𝑑, 𝜈 ∈ ℕ, 𝛼 ∈ ℕ∗, with 𝜈 > 𝑑/2. Let 𝐸[𝑔] ∶= ∇𝑥Φ[𝑔] be the kernel to
the Vlasov-Poisson equation (III-2.2a), computed with some function 𝑔 ∈ ℋ𝛼

𝜈 , and
let 𝐸𝐾[ℎ] ∶= ∇𝑥Φ𝐾[ℎ] be the kernel to the Vlasov-Poisson equation with truncated
kernel (III-4.19a), computed with ℎ ∈ ℋ𝛼

𝜈 . We do not require 𝑔 and ℎ to be respectively
solutions of (III-2.2a) and (III-4.19a). Assume there exists a constant 𝐶 > 0 such that
for all 𝐾 ∈ ℕ∗, ||(𝑔 − ℎ)(𝑡)||2ℋ0

𝜈
≤ 𝐶

(1+𝐾)𝛼 . Then, for all 𝑡 ∈ [0, 𝑇 ] and all 𝑥 ∈ 𝕋𝑑
𝐿,

∣𝜕𝑐
𝑥 (𝐸[𝑔](𝑡, 𝑥) − 𝐸𝐾[ℎ](𝑡, 𝑥))∣ ≤ 𝐶

(1 + 𝐾)
𝛼+1

2 −𝑑−∑𝑖 𝑐𝑖
. (III-5.13)

Proof. For any 𝑡 ∈ [0, 𝑇 ] and 𝑥 ∈ 𝕋𝑑
𝐿,

𝜕𝑐
𝑥 (𝐸𝐾[ℎ](𝑡, 𝑥) − 𝐸[𝑔](𝑡, 𝑥))

= 1
|𝕋𝑑

𝐿|
∑

𝑘∈(ℤ𝑑)∗

|𝑘|≤𝐾

𝑘
𝐿

2𝜋 ∣ 𝑘
𝐿 ∣2

(2𝜋 𝑘
𝐿

)
𝑐

sin (2𝜋 𝑘
𝐿

⋅ 𝑦) (𝐶𝐾
𝑘 (𝑡) − 𝐶𝑘(𝑡))

− 1
|𝕋𝑑

𝐿|
∑

𝑘∈(ℤ𝑑)∗

|𝑘|≤𝐾

𝑘
𝐿

2𝜋 ∣ 𝑘
𝐿 ∣2

(2𝜋 𝑘
𝐿

)
𝑐

cos (2𝜋 𝑘
𝐿

⋅ 𝑦) (𝑆𝐾
𝑘 (𝑡) − 𝑆𝑘(𝑡))

+ 1
|𝕋𝑑

𝐿|
∑

𝑘∈(ℤ𝑑)∗

|𝑘|>𝐾

𝑘
𝐿

2𝜋 ∣ 𝑘
𝐿 ∣2

(2𝜋 𝑘
𝐿

)
𝑐

(sin (2𝜋 𝑘
𝐿

⋅ 𝑦) 𝐶𝑘(𝑡) − cos (2𝜋 𝑘
𝐿

⋅ 𝑦) 𝑆𝑘(𝑡))
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Let ̄𝑐 ∶= ∑𝑖 𝑐𝑖. Note that |𝑘𝑐| ≤ |𝑘| ̄𝑐, therefore

∣𝜕𝑐
𝑥 (𝐸𝐾[ℎ](𝑡, 𝑥) − 𝐸[𝑔](𝑡, 𝑥))∣ ≤ (2𝜋) ̄𝑐

|𝕋𝑑
𝐿|

∑
𝑘∈(ℤ𝑑)∗

|𝑘|≤𝐾

∣ 𝑘
𝐿 ∣ ̄𝑐+1

2𝜋 ∣ 𝑘
𝐿 ∣2

(∣𝐶𝐾
𝑘 (𝑡) − 𝐶𝑘(𝑡)∣ + ∣𝑆𝐾

𝑘 (𝑡) − 𝑆𝑘(𝑡)∣)

+ (2𝜋) ̄𝑐

|𝕋𝑑
𝐿|

∑
𝑘∈(ℤ𝑑)∗

|𝑘|>𝐾

∣ 𝑘
𝐿 ∣ ̄𝑐+1

2𝜋 ∣ 𝑘
𝐿 ∣2

(|𝐶𝑘(𝑡)| + |𝑆𝑘(𝑡)|)

≤ 1
|𝕋𝑑

𝐿|
∑

𝑘∈(ℤ𝑑)∗

|𝑘|≤𝐾

1
2𝜋 ∣ 𝑘

𝐿 ∣1− ̄𝑐 (∣𝐶𝐾
𝑘 (𝑡) − 𝐶𝑘(𝑡)∣ + ∣𝑆𝐾

𝑘 (𝑡) − 𝑆𝑘(𝑡)∣)

+ 1
|𝕋𝑑

𝐿|
∑

𝑘∈(ℤ𝑑)∗

|𝑘|>𝐾

1
2𝜋 ∣ 𝑘

𝐿 ∣1− ̄𝑐 (|𝐶𝑘(𝑡)| + |𝑆𝑘(𝑡)|) .

(III-5.14)

We have, for 𝑔, ℎ ∈ ℋ𝑟
𝜈,

∣𝐶𝐾
𝑘 (𝑡) − 𝐶𝑘(𝑡)∣ ≤ ∫

𝕋𝑑
𝐿×ℝ𝑑

|𝑔(𝑡, 𝑦, 𝑣) − ℎ(𝑡, 𝑦, 𝑣)| 𝑑𝑦𝑑𝑣

≤ ∫
𝕋𝑑

𝐿

(∫
ℝ𝑑

𝑑𝑣
(1 + |𝑣|2)𝜈 )

1/2

(∫
ℝ𝑑

(1 + |𝑣|2)𝜈 |𝑔(𝑡, 𝑦, 𝑣) − ℎ(𝑡, 𝑦, 𝑣)|2 𝑑𝑣)
1/2

𝑑𝑦

≤ 𝐶 (∫
𝕋𝑑

𝐿×ℝ𝑑

(1 + |𝑣|2)𝜈 |𝑔(𝑡, 𝑦, 𝑣) − ℎ(𝑡, 𝑦, 𝑣)|2 𝑑𝑦𝑑𝑣)
1/2

≤ 𝐶 ||(𝑔 − ℎ)(𝑡)||ℋ0
𝜈

,

for some constant 𝐶 that does not depend on 𝐾 or 𝑡, thanks to the assumption 𝜈 > 𝑑/2.
The same estimate holds naturally for ∣𝑆𝐾

𝑘 (𝑡) − 𝑆𝑘(𝑡)∣. Therefore, using our hypothesis
||(𝑔 − ℎ)(𝑡)||2ℋ0

𝜈
≤ 𝐶

(1+𝐾)𝛼 , we get

∣𝐶𝑘(𝑡) − 𝐶𝐾
𝑘 (𝑡)∣2 ≤ 𝐶

(1 + 𝐾)𝛼 .

The same estimate holds for ∣𝑆𝐾
𝑘 (𝑡) − 𝑆𝑘(𝑡)∣2. Then, summing over 𝑘 and applying a
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discrete Cauchy-Schwarz inequality, we obtain for any 𝜇 > 𝑑+2( ̄𝑐−1), i.e. 2−2 ̄𝑐+𝜇 > 𝑑,

∑
𝑘∈(ℤ𝑑)∗

|𝑘|≤𝐾

1

2𝜋 ∣ 𝑘
𝐿 ∣1− ̄𝑐+𝜇/2 |𝑘|𝜇/2 (∣𝐶𝐾

𝑘 (𝑡) − 𝐶𝑘(𝑡)∣ + ∣𝑆𝐾
𝑘 (𝑡) − 𝑆𝑘(𝑡)∣)

≤
⎛⎜⎜⎜⎜
⎝

∑
𝑘∈(ℤ𝑑)∗

|𝑘|≤𝐾

1
4𝜋2 ∣ 𝑘

𝐿 ∣2−2 ̄𝑐+𝜇

⎞⎟⎟⎟⎟
⎠

1/2

⎛⎜⎜⎜⎜
⎝

∑
𝑘∈(ℤ𝑑)∗

|𝑘|≤𝐾

|𝑘|𝜇 [∣𝐶𝐾
𝑘 (𝑡) − 𝐶𝑘(𝑡)∣ + ∣𝑆𝐾

𝑘 (𝑡) − 𝑆𝑘(𝑡)∣]2⎞⎟⎟⎟⎟
⎠

1/2

≤ 𝐶 ( 𝐾𝑑+𝜇

(1 + 𝐾)𝛼 )
1/2

≤ 𝐶
(1 + 𝐾)(𝛼−𝑑−𝜇)/2 (III-5.15)

where the constant 𝐶 does not depend on 𝐾 or 𝑡.

The second sum in (III-5.14) can be estimated with Lemma III.3 by using the fact
that 𝑔 ∈ ℋ𝛼

𝜈 . Indeed, we have

|𝐶𝑘(𝑡)| = ∣1
2

∫
ℝ𝑑

∫
𝕋𝑑

𝐿

(𝑒2𝑖𝜋 𝑘
𝐿 ⋅𝑦 + 𝑒−2𝑖𝜋 𝑘

𝐿 ⋅𝑦) 𝑔(𝑡, 𝑦, 𝑣)𝑑𝑦𝑑𝑣∣

= ∣|𝕋
𝑑
𝐿|

2
∫

ℝ𝑑

(ℱ𝑥(𝑔)(𝑘, 𝑣) + ℱ𝑥(𝑔)(−𝑘, 𝑣)) 𝑑𝑣∣

≤ 𝐶 ([∫
ℝ𝑑

(1 + |𝑣|2)𝜈 |ℱ𝑥(𝑔)(𝑘, 𝑣)|2 𝑑𝑣]
1/2

+ [∫
ℝ𝑑

(1 + |𝑣|2)𝜈 |ℱ𝑥(𝑔)(−𝑘, 𝑣)|2 𝑑𝑣]
1/2

) .

Now apply Lemma III.3 to obtain, for all |𝑘| > 𝐾,

|𝐶𝑘(𝑡)| ≤ 𝐶
(1 + 𝐾)𝛼 , (III-5.16)

the same estimate holding for |𝑆𝑘(𝑡)|. Hence,

∑
𝑘∈(ℤ𝑑)∗

|𝑘|>𝐾

1
|𝑘|1− ̄𝑐 (|𝐶𝑘(𝑡)| + |𝑆𝑘(𝑡)|) ≤ 𝐶

(1 + 𝐾)𝛼+1− ̄𝑐−(𝑑+1) = 𝐶
(1 + 𝐾)𝛼−𝑑− ̄𝑐 . (III-5.17)

It remains to compare the exponents in (III-5.15) and (III-5.17). Under the condition
𝜇 > 𝑑 + 2( ̄𝑐 − 1), we have

𝛼 − 𝑑 − ̄𝑐 − 𝛼 − 𝑑 − 𝜇
2

= 𝛼
2

− ̄𝑐 − 𝑑
2

+ 𝜇
2

> 𝛼
2

− ̄𝑐 + ̄𝑐 − 1 = 𝛼
2

− 1.

Since 𝛼 ≥ 1, we have 𝛼
2 − 1 ≥ −1

2 . However, the quantities 𝛼, 𝑑 and ̄𝑐 are all integers,
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hence the condition 𝛼 − 𝑑 − ̄𝑐 > −1
2 implies 𝛼 − 𝑑 − ̄𝑐 ≥ 0. Hence, the error in (III-5.14)

is dominated by the error of the first sum. Taking for instance 𝜇 = 𝑑 + 2 ̄𝑐 − 1, we obtain

∣𝜕𝑐
𝑥 (𝐸[𝑔](𝑡, 𝑥) − 𝐸𝐾[ℎ](𝑡, 𝑥))∣ ≤ 𝐶

(1 + 𝐾)𝛼+1
2 −𝑑− ̄𝑐

We will need at some point regularity in time for 𝑓𝐾, 𝐸𝐾, and this can be obtained at
the expense of additional space regularity. The following lemma shows how to “exchange”
space regularity with time regularity:

Proposition III.4

Let 𝑗 ∈ ℕ∗, 𝜈, 𝑟, 𝛼 ∈ ℕ such that 𝜈 + 𝑗 > 𝑑/2, 𝑟 ≥ max (3(𝜈 + 𝑗), (𝑗 − 1)(𝑑 + 1)) and
𝛼 ≥ 2(𝑟 + 𝑑). Let 𝐾 ∈ ℕ∗. If 𝑓0 ∈ ℋ𝑟+𝛼

𝜈+𝑗 , then the solution 𝑓𝐾 to (III-4.19a), as well
as the solution 𝑓 to (III-2.2a), are smooth with respect to time in ℋ𝑟

𝜈. That is, for all
𝑙 ∈ ℕ with 𝑙 ≤ 𝑗,

𝜕𝑙
𝑡𝑓𝐾 ∈ ℋ𝑟−(𝑙−1)(𝑑+1)

𝜈+𝑗−𝑙 , 𝜕𝑙
𝑡𝑓 ∈ ℋ𝑟−(𝑙−1)(𝑑+1)

𝜈+𝑗−𝑙 ,

and we have
𝐸𝐾 ∈ 𝐶𝑗([0, 𝑇 ] × ℝ𝑑), 𝐸 ∈ 𝐶𝑗([0, 𝑇 ] × ℝ𝑑).

Proof. Thanks to the way the kernel 𝐸𝐾 is defined, the joint regularity in (𝑡, 𝑥) can be
studied by studying the regularity in 𝑡 and the regularity in 𝑥. Note that (𝑥 ↦ 𝐸𝐾(𝑡, 𝑥))
is 𝐶∞(ℝ𝑑) and periodic with period 𝕋𝑑

𝐿, so it only remains to study the regularity with
respect to time of the kernel, which boils down to studying the regularity with respect
to time of the coefficients 𝐶𝐾

𝑘 (𝑡), 𝑆𝐾
𝑘 (𝑡). Our proof will be done by induction on the

derivative.

Base case With our assumptions we get 𝑟 + 𝛼 − 2(𝜈 + 𝑗) − 1 ≥ 3(𝜈 + 𝑗), so that by
Proposition III.1 we have 𝑓𝐾(𝑡) ∈ ℋ𝑟+𝛼

𝜈+𝑗 for short enough times. Thus,

𝜕𝑡𝐶𝐾
𝑘 (𝑡) = ∫

𝕋𝑑×ℝ𝑑

cos (2𝜋 𝑘
𝐿

⋅ 𝑦) 𝜕𝑡𝑓𝐾(𝑡, 𝑦, 𝑣)𝑑𝑦𝑑𝑣

= − ∫
𝕋𝑑×ℝ𝑑

cos (2𝜋 𝑘
𝐿

⋅ 𝑦) (𝑣 ⋅ ∇𝑥𝑓𝐾(𝑡, 𝑦, 𝑣) + 𝐸𝐾(𝑡, 𝑦) ⋅ ∇𝑣𝑓𝐾(𝑡, 𝑦, 𝑣)) 𝑑𝑦𝑑𝑣

= − ∫
𝕋𝑑×ℝ𝑑

𝑣 ⋅ 2𝜋𝑘
𝐿

sin (2𝜋 𝑘
𝐿

⋅ 𝑦) 𝑓𝐾(𝑡, 𝑦, 𝑣)𝑑𝑦𝑑𝑣,
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since
− ∫

𝕋𝑑×ℝ𝑑

cos (2𝜋 𝑘
𝐿

⋅ 𝑦) 𝐸𝐾(𝑡, 𝑦) ⋅ ∇𝑣𝑓𝐾(𝑡, 𝑦, 𝑣)𝑑𝑦𝑑𝑣 = 0.

This can be rewritten

𝜕𝑡𝐶𝐾
𝑘 (𝑡) = − 1

2𝑖
∫

ℝ𝑑

𝑣 ⋅ 2𝜋𝑘
𝐿

(∫
𝕋𝑑

𝐿

𝑒2𝑖𝜋 𝑘
𝐿 ⋅𝑦𝑓𝐾(𝑡, 𝑦, 𝑣)𝑑𝑦 − ∫

𝕋𝑑
𝐿

𝑒−2𝑖𝜋 𝑘
𝐿 ⋅𝑦𝑓𝐾(𝑡, 𝑦, 𝑣)𝑑𝑦) 𝑑𝑣

= −|𝕋𝑑
𝐿|

2𝑖
∫

ℝ𝑑

𝑣 ⋅ 2𝜋𝑘
𝐿

(ℱ𝑥(𝑓𝐾)(−𝑘, 𝑣) − ℱ𝑥(𝑓𝐾)(𝑘, 𝑣)) 𝑑𝑣.

Therefore,

∣𝜕𝑡𝐶𝐾
𝑘 (𝑡)∣ ≤ |𝕋𝑑

𝐿|
2

∣2𝜋𝑘
𝐿

∣ ∫
ℝ𝑑

|𝑣| (∣ℱ𝑥(𝑓𝐾)(−𝑘, 𝑣)∣ + ∣ℱ𝑥(𝑓𝐾)(𝑘, 𝑣)∣) 𝑑𝑣.

Apply the Cauchy-Schwarz inequality with

|𝑣| ∣ℱ𝑥(𝑓𝐾)(𝑘, 𝑣)∣ = (1 + |𝑣|)𝜈

(1 + |𝑣|)𝜈 |𝑣| ∣ℱ𝑥(𝑓𝐾)(𝑘, 𝑣)∣ ,

to obtain, for some 𝐶 which does not depend on 𝐾:

∣𝜕𝑡𝐶𝐾
𝑘 (𝑡)∣ ≤ 𝐶|𝑘|

⎛⎜⎜⎜⎜⎜⎜
⎝

[∫
ℝ𝑑

|𝑣|2(1+𝜈) ∣ℱ𝑥(𝑓𝐾)(𝑘, 𝑣)∣2]
1/2

+ [∫
ℝ𝑑

|𝑣|2(1+𝜈) ∣ℱ𝑥(𝑓𝐾)(−𝑘, 𝑣)∣2]
1/2

⎞⎟⎟⎟⎟⎟⎟
⎠

≤ 𝐶|𝑘|
⎛⎜⎜⎜⎜⎜⎜
⎝

[∫
ℝ𝑑

|𝑣|2(1+𝜈) ∣ℱ𝑥(𝑓 − 𝑓𝐾)(𝑘, 𝑣)∣]
1/2

+ [∫
ℝ𝑑

|𝑣|2(1+𝜈) |ℱ𝑥(𝑓)(𝑘, 𝑣)|]
1/2

+ [∫
ℝ𝑑

|𝑣|2(1+𝜈) ∣ℱ𝑥(𝑓 − 𝑓𝐾)(−𝑘, 𝑣)∣2]
1/2

+ [∫
ℝ𝑑

|𝑣|2(1+𝜈) |ℱ𝑥(𝑓)(−𝑘, 𝑣)|2]
1/2

⎞⎟⎟⎟⎟⎟⎟
⎠

The same estimate holds for |𝜕𝑡𝑆𝐾
𝑘 (𝑡)|. The second and fourth terms are estimated by

Lemma III.3, using that 𝑓 ∈ ℋ𝑟+𝛼
𝜈+𝑗 :

[∫
ℝ𝑑

|𝑣|2(1+𝜈) |ℱ𝑥(𝑓)(−𝑘, 𝑣)|2]
1/2

≤ 1
(1 + |𝑘|)𝑟+𝛼 .
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Let 𝑐 ∈ ℕ𝑑 and let ̄𝑐 ∶= ∑𝑖 𝑐𝑖. We assume ̄𝑐 ≤ 𝑟 + 𝛼 − 2(𝜈 + 𝑗) − 1, so that

∣𝜕𝑐
𝑥𝜕𝑡𝐸𝐾(𝑡, 𝑥)∣ ≤ (2𝜋) ̄𝑐

|𝕋𝑑
𝐿|

∑
𝑘∈(ℤ𝑑)∗

|𝑘|≤𝐾

1
2𝜋 ∣ 𝑘

𝐿 ∣1− ̄𝑐 (∣𝜕𝑡𝐶𝐾
𝑘 (𝑡)∣ + ∣𝜕𝑡𝑆𝐾

𝑘 (𝑡)∣)

≤ 𝐶 ∑
𝑘∈(ℤ𝑑)∗

|𝑘|≤𝐾

|𝑘| ̄𝑐
⎛⎜⎜⎜⎜⎜⎜
⎝

[∫
ℝ𝑑

|𝑣|2(1+𝜈) ∣ℱ𝑥(𝑓 − 𝑓𝐾)(𝑘, 𝑣)∣2 𝑑𝑣]
1/2

+ 1
(1 + |𝑘|)𝑟+𝛼

+ [∫
ℝ𝑑

|𝑣|2(1+𝜈) ∣ℱ𝑥(𝑓 − 𝑓𝐾)(−𝑘, 𝑣)∣2 𝑑𝑣]
1/2

+ 1
(1 + |𝑘|)𝑟+𝛼

⎞⎟⎟⎟⎟⎟⎟
⎠

.

The sum

∑
𝑘∈(ℤ𝑑)∗

|𝑘|≤𝐾

|𝑘| ̄𝑐 [∫
ℝ𝑑

|𝑣|2(1+𝜈) ∣ℱ𝑥(𝑓 − 𝑓𝐾)(𝑘, 𝑣)∣2 𝑑𝑣]
1/2

can be bounded by some quantity equivalent to ∣∣𝑓 − 𝑓𝐾∣∣
ℋ ̄𝑐

𝜈+1
≤ ∣∣𝑓 − 𝑓𝐾∣∣

ℋ𝑟+𝛼−2(𝜈+𝑗)−1
𝜈+𝑗

.

Since 𝑓 − 𝑓𝐾 ∈ ℋ𝑟+𝛼
𝜈+𝑗 , by Proposition III.2 we get

∑
𝑘∈(ℤ𝑑)∗

|𝑘|≤𝐾

|𝑘| ̄𝑐 [∫
ℝ𝑑

|𝑣|2(1+𝜈) ∣ℱ𝑥(𝑓 − 𝑓𝐾)(𝑘, 𝑣)∣2 𝑑𝑣]
1/2

≤ 𝐶
(1 + 𝐾)𝜈+𝑗+1/2 .

Hence,
∣𝜕𝑐

𝑥𝜕𝑡𝐸𝐾(𝑡, 𝑥)∣ ≤ 𝐶
(1 + 𝐾)𝜈+𝑗+1/2 + 𝐶 ∑

𝑘∈(ℤ𝑑)∗

|𝑘|≤𝐾

1
(1 + |𝑘|)2(𝜈+𝑗)+1 .

This can be bounded by a constant 𝐶 > 0 which does not depend on 𝐾, by using the
fact that 2(𝜈 + 𝑗) + 1 > 𝑑 + 1. Hence, for 𝛽1 ∈ ℕ,

∣∣𝜕𝑡𝑓𝐾∣∣
ℋ𝛽1

𝜈+𝑗−1
≤ ∣∣𝑣 ⋅ 𝑓𝐾∣∣

ℋ𝛽1
𝜈+𝑗−1

+ ∣∣𝐸𝐾 ⋅ ∇𝑣𝑓𝐾∣∣
ℋ𝛽1

𝜈+𝑗−1
≤ 𝐶 ∣∣𝑓𝐾∣∣

ℋ𝛽1+1
𝜈+𝑗

,

where the last inequality holds if

𝛽1 ≤ 𝑟 + 𝛼 − 2(𝜈 + 𝑗) − 1. (III-5.18)

For the right-hand side of the estimate to be finite, we need to have

𝛽1 + 1 ≤ 𝑟 + 𝛼,

since we only have 𝑓𝐾 ∈ ℋ𝑟+𝛼
𝜈+𝑗 . However this is already satisfied by (III-5.18) since
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𝜈 + 𝑗 ≥ 0. From now on let 𝛽1 = 𝑟, so that

𝜕𝑡𝑓𝐾 ∈ ℋ𝛽1
𝜈+𝑗−1.

This holds true for any 𝐾 ∈ ℕ∗, let’s now show this estimate also holds with the
solution 𝑓 to the non-truncated Vlasov-Poisson equation. Let 𝑝 ≤ 𝛽1 − 1,

∣∣𝜕𝑡(𝑓 − 𝑓𝐾)∣∣
ℋ𝑝

𝜈+𝑗−1

≤ ∣∣𝑣 ⋅ ∇𝑥(𝑓 − 𝑓𝐾)∣∣
ℋ𝑝

𝜈+𝑗−1
+ ∣∣𝐸𝐾 ⋅ ∇𝑣𝑓𝐾 − 𝐸 ⋅ ∇𝑣𝑓∣∣

ℋ𝑝
𝜈+𝑗−1

≤ ∣∣𝑣 ⋅ ∇𝑥(𝑓 − 𝑓𝐾)∣∣
ℋ𝑝

𝜈+𝑗−1
+ ∣∣𝐸𝐾 ⋅ ∇𝑣(𝑓𝐾 − 𝑓)∣∣

ℋ𝑝
𝜈+𝑗−1

+ ∣∣(𝐸 − 𝐸𝐾) ⋅ ∇𝑣𝑓∣∣
ℋ𝑝

𝜈+𝑗−1

≤ ∣∣𝑓 − 𝑓𝐾∣∣
ℋ𝑝+1

𝜈+𝑗
+ 𝐶 ∣∣𝑓𝐾 − 𝑓∣∣

ℋ𝑝+1
𝜈+𝑗

+ max
𝑐∈ℕ𝑑

̄𝑐≤𝑝

∣∣𝜕𝑐
𝑥 (𝐸𝐾 − 𝐸)∣∣

𝕃∞(𝕋𝑑
𝐿)

||𝑓||ℋ𝑝+1
𝜈+𝑗

. (III-5.19)

Because 𝑝 + 1 ≤ 𝛽1 ≤ 𝑟, we have

∣∣𝑓 − 𝑓𝐾∣∣
ℋ𝑝+1

𝜈+𝑗
≤ ∣∣𝑓 − 𝑓𝐾∣∣

ℋ𝑟
𝜈+𝑗

≤ 𝐶
(1 + 𝐾)𝛼/2 ,

where the first inequality is clear and the second one comes from Proposition III.2. For
the third term of (III-5.19), we have

∣∣𝑓 − 𝑓𝐾∣∣
ℋ0

𝜈+𝑗
≤ ∣∣𝑓 − 𝑓𝐾∣∣

ℋ𝑟
𝜈+𝑗

≤ 𝐶
(1 + 𝐾)𝛼/2 ,

so that, by Proposition III.3,

max
𝑐∈ℕ𝑑

̄𝑐≤𝑝

∣∣𝜕𝑐
𝑥 (𝐸𝐾 − 𝐸)∣∣

𝕃∞(𝕋𝑑
𝐿)

≤ max
𝑐∈ℕ𝑑

̄𝑐≤𝑝

𝐶
(1 + 𝐾)(𝛼+1)/2−𝑑− ̄𝑐 ≤ 𝐶

(1 + 𝐾)(𝛼+1)/2−𝑑−𝑝 .

Hence, (III-5.19) yields

∣∣𝜕𝑡(𝑓 − 𝑓𝐾)∣∣
ℋ𝑝

𝜈+𝑗−1
≤ (𝐶 + 1) ∣∣𝑓𝐾 − 𝑓∣∣

ℋ𝑝+1
𝜈+𝑗

+ max
𝑐∈ℕ𝑑

̄𝑐≤𝑝

∣∣𝜕𝑐
𝑥 (𝐸𝐾 − 𝐸)∣∣

𝕃∞(𝕋𝑑
𝐿)

||𝑓||ℋ𝑝+1
𝜈+𝑗

≤ 𝐶
(1 + 𝐾)𝛼/2 + 𝐶

(1 + 𝐾)(𝛼+1)/2−𝑑−𝑝 .

Thus,
∣∣𝜕𝑡(𝑓 − 𝑓𝐾)∣∣

ℋ𝑝
𝜈+𝑗−1

≤ 𝐶
(1 + 𝐾)(𝛼+1)/2−𝑑−𝑝 = 𝐶

(1 + 𝐾)𝛾1+𝛽1−𝑝 ,
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where 𝛾1 is defined by the relation

𝛼 + 1
2

− 𝑑 − 𝑝 = 𝛾1 + 𝛽1 − 𝑝

⟺ 𝛾1 = 𝛼 + 1
2

− 𝛽1 − 𝑑 = 𝛼 + 1
2

− 𝑟 − 𝑑.

Requiring 𝛾1 > 0 yields the condition

𝛼 > 2(𝛽1 + 𝑑) − 1 = 2(𝑟 + 𝑑) − 1.

With our assumption 𝛼 ≥ 2(𝑟 + 𝑑), the above inequality is satisfied.

Induction Let’s now turn to the higher derivatives. Let 𝑙 ∈ ℕ with 𝑙 ≤ 𝑗, suppose that
for any 𝑚 ≤ 𝑙 − 1, 𝜕𝑚

𝑡 𝑓𝐾, 𝜕𝑚
𝑡 𝑓 ∈ ℋ𝛽𝑚

𝜈+𝑗−𝑚 for some 𝑟 = 𝛽1 ≥ ⋯ ≥ 𝛽𝑙−1 > 0, and assume
there exists 𝐶 and 0 < 𝛾1 ≤ ⋯ ≤ 𝛾𝑙−1 such that for all 𝑚 ≤ 𝑙 − 1, 𝑝 ≤ 𝛽𝑚,

∣∣𝜕𝑚
𝑡 (𝑓 − 𝑓𝐾)∣∣

ℋ𝑝
𝜈+𝑗−𝑚

≤ 𝐶
(1 + 𝐾)𝛾𝑚+𝛽𝑚−𝑝 . (III-5.20)

Let 𝑚 ≤ 𝑙, we have

𝜕𝑚
𝑡 𝐶𝐾

𝑘 (𝑡) = ∫
𝕋𝑑×ℝ𝑑

cos (2𝜋 𝑘
𝐿

⋅ 𝑦) 𝜕𝑚
𝑡 𝑓𝐾(𝑡, 𝑦, 𝑣)𝑑𝑦𝑑𝑣

= − ∫
𝕋𝑑×ℝ𝑑

cos (2𝜋 𝑘
𝐿

⋅ 𝑦) (
𝑣 ⋅ ∇𝑥𝜕𝑚−1

𝑡 𝑓𝐾(𝑡, 𝑦, 𝑣)

+ 𝜕𝑚−1
𝑡 [𝐸𝐾(𝑡, 𝑦) ⋅ ∇𝑣𝑓𝐾(𝑡, 𝑦, 𝑣)]

) 𝑑𝑦𝑑𝑣

= − ∫
𝕋𝑑×ℝ𝑑

cos (2𝜋 𝑘
𝐿

⋅ 𝑦) 𝑣 ⋅ ∇𝑥𝜕𝑚−1
𝑡 𝑓𝐾(𝑡, 𝑦, 𝑣)𝑑𝑦𝑑𝑣,

since
∫

𝕋𝑑

cos (2𝜋 𝑘
𝐿

⋅ 𝑦) 𝐸𝐾(𝑡, 𝑦) ⋅ (∫
ℝ𝑑

∇𝑣𝑓𝐾(𝑡, 𝑦, 𝑣)𝑑𝑣) 𝑑𝑦 = 0.
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As in the case 𝑙 = 1, we have

∣𝜕𝑚
𝑡 𝐶𝐾

𝑘 (𝑡)∣ ≤ 𝐶|𝑘|
⎛⎜⎜⎜⎜⎜⎜
⎝

[∫
ℝ𝑑

|𝑣|2(1+𝜈) ∣ℱ𝑥(𝜕𝑚−1
𝑡 𝑓𝐾)(𝑘, 𝑣)∣2 𝑑𝑣]

1/2

+ [∫
ℝ𝑑

|𝑣|2(1+𝜈) ∣ℱ𝑥(𝜕𝑚−1
𝑡 𝑓𝐾)(−𝑘, 𝑣)∣2 𝑑𝑣]

1/2

⎞⎟⎟⎟⎟⎟⎟
⎠

≤ 𝐶|𝑘|

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

[∫
ℝ𝑑

|𝑣|2(1+𝜈) ∣ℱ𝑥(𝜕𝑚−1
𝑡 (𝑓 − 𝑓𝐾))(𝑘, 𝑣)∣ 𝑑𝑣]

1/2

+ [∫
ℝ𝑑

|𝑣|2(1+𝜈) ∣ℱ𝑥(𝜕𝑚−1
𝑡 𝑓)(𝑘, 𝑣)∣ 𝑑𝑣]

1/2

+ [∫
ℝ𝑑

|𝑣|2(1+𝜈) ∣ℱ𝑥(𝜕𝑚−1
𝑡 (𝑓 − 𝑓𝐾))(−𝑘, 𝑣)∣2 𝑑𝑣]

1/2

+ [∫
ℝ𝑑

|𝑣|2(1+𝜈) ∣ℱ𝑥(𝜕𝑚−1
𝑡 𝑓)(−𝑘, 𝑣)∣2 𝑑𝑣]

1/2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

The same estimate holds for |𝜕𝑚
𝑡 𝑆𝐾

𝑘 (𝑡)|.

The second and fourth terms are estimated by Lemma III.3, using that 𝜕𝑚−1
𝑡 𝑓 ∈

ℋ𝛽𝑚−1
𝜈+𝑗−(𝑚−1):

[∫
ℝ𝑑

|𝑣|2(1+𝜈) ∣ℱ𝑥(𝜕𝑚−1
𝑡 𝑓)(−𝑘, 𝑣)𝑑𝑣∣2]

1/2

≤ 1
(1 + |𝑘|)𝛽𝑚−1

.

For 𝑐 ∈ ℕ𝑑, ̄𝑐 ≤ 𝛽𝑚−1 − 𝑑 − 1, we have

∣𝜕𝑐
𝑥𝜕𝑚

𝑡 𝐸𝐾(𝑡, 𝑥)∣ ≤ (2𝜋) ̄𝑐

|𝕋𝑑
𝐿|

∑
𝑘∈(ℤ𝑑)∗

|𝑘|≤𝐾

1
2𝜋 ∣ 𝑘

𝐿 ∣1− ̄𝑐 (∣𝜕𝑚−1
𝑡 𝐶𝐾

𝑘 (𝑡)∣ + ∣𝜕𝑚−1
𝑡 𝑆𝐾

𝑘 (𝑡)∣)

≤ 𝐶 ∑
𝑘∈(ℤ𝑑)∗

|𝑘|≤𝐾

|𝑘| ̄𝑐
⎛⎜⎜⎜⎜⎜⎜
⎝

[∫
ℝ𝑑

|𝑣|2(1+𝜈) ∣ℱ𝑥(𝜕𝑚−1
𝑡 (𝑓 − 𝑓𝐾))(𝑘, 𝑣)∣2 𝑑𝑣]

1/2

+ 1
(1 + |𝑘|)𝛽𝑚−1

+ [∫
ℝ𝑑

|𝑣|2(1+𝜈) ∣ℱ𝑥(𝜕𝑚−1
𝑡 (𝑓 − 𝑓𝐾))(−𝑘, 𝑣)∣2 𝑑𝑣]

1/2

+ 1
(1 + |𝑘|)𝛽𝑚−1

⎞⎟⎟⎟⎟⎟⎟
⎠

.

The sum

∑
𝑘∈(ℤ𝑑)∗

|𝑘|≤𝐾

|𝑘| ̄𝑐 [∫
ℝ𝑑

|𝑣|2(1+𝜈) ∣ℱ𝑥(𝜕𝑚−1
𝑡 (𝑓 − 𝑓𝐾))(𝑘, 𝑣)∣2 𝑑𝑣]

1/2
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can be bounded by some quantity equivalent to

∣∣𝜕𝑚−1
𝑡 (𝑓 − 𝑓𝐾)∣∣

ℋ ̄𝑐
𝜈+1

≤ ∣∣𝜕𝑚−1
𝑡 (𝑓 − 𝑓𝐾)∣∣

ℋ𝛽𝑚−1−𝑑−1
𝜈+𝑗−(𝑚−1)

≤ 𝐶
(1 + 𝐾)𝛾𝑚−1+𝑑+1 ,

where the last inequality is given by our induction hypothesis (III-5.20). That is,

∑
𝑘∈(ℤ𝑑)∗

|𝑘|≤𝐾

|𝑘| ̄𝑐 [∫
ℝ𝑑

|𝑣|2(1+𝜈) ∣ℱ𝑥(𝜕𝑚−1
𝑡 (𝑓 − 𝑓𝐾))(𝑘, 𝑣)∣2 𝑑𝑣]

1/2

≤ 𝐶
(1 + 𝐾)𝛾𝑚−1+𝑑+1 .

Hence, for all 𝑚 ≤ 𝑙 and ̄𝑐 ≤ 𝛽𝑚−1 − 𝑑 − 1,

∣𝜕𝑐
𝑥𝜕𝑚−1

𝑡 𝐸𝐾(𝑡, 𝑥)∣ ≤ 𝐶
(1 + 𝐾)𝛾𝑚−1+𝑑+1 + 𝐶 ∑

𝑘∈(ℤ𝑑)∗

|𝑘|≤𝐾

1
(1 + |𝑘|)𝑑+1 .

This can be bounded by a constant 𝐶 > 0 which does not depend on 𝐾. Thus, there
exists a constant 𝐶 > 0 such that for all 𝑚 ≤ 𝑙, all 𝑐 ∈ ℕ𝑑 with ̄𝑐 ≤ 𝛽𝑚−1 − 𝑑 − 1 and all
𝐾 ∈ ℕ,

∣𝜕𝑐
𝑥𝜕𝑚−1

𝑡 𝐸𝐾(𝑡, 𝑥)∣ ≤ 𝐶

for some constant 𝐶 > 0 which is independent of 𝑡, 𝐾, 𝑥.

Hence, for 𝛽𝑙 ∈ ℕ,

∣∣𝜕𝑙
𝑡𝑓𝐾∣∣

ℋ𝛽𝑙
𝜈+𝑗−𝑙

≤ ∣∣𝑣 ⋅ 𝜕𝑙−1
𝑡 ∇𝑥𝑓𝐾∣∣

ℋ𝛽𝑙
𝜈+𝑗−𝑙

+
𝑙−1
∑
𝑚=0

(𝑙 − 1
𝑚

) ∣∣𝜕𝑚
𝑡 𝐸𝐾 ⋅ ∇𝑣𝜕𝑙−1−𝑚

𝑡 𝑓𝐾∣∣
ℋ𝛽𝑙

𝜈+𝑗−𝑙

≤ 𝐶
𝑙−1
∑
𝑚=0

(𝑙 − 1
𝑚

) ∣∣𝜕𝑙−1−𝑚
𝑡 𝑓𝐾∣∣

ℋ𝛽𝑙+1
𝜈+𝑗−(𝑙−1)

where the last inequality holds when

𝛽𝑙 ≤ 𝛽𝑙−1 − 𝑑 − 1

⋮

𝛽𝑙 ≤ 𝛽1 − 𝑑 − 1,

which reduces to
𝛽𝑙 ≤ 𝛽𝑙−1 − 𝑑 − 1 (III-5.21)

thanks to our assumption 𝛽1 ≥ ⋯ ≥ 𝛽𝑙−1. By induction on 𝑙 = 𝑗, 𝑗 − 1, … , 1, we get
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conditions on the 𝛽𝑙 (recall we let 𝛽1 = 𝑟):

𝛽𝑙 ≤ 𝛽1 − (𝑙 − 1)(𝑑 + 1) = 𝑟 − (𝑙 − 1)(𝑑 + 1).

In order to have 𝛽𝑗 ≥ 0, we need to have 𝑟 ≥ (𝑗−1)(𝑑+1) which is one of our assumptions
on 𝑟. Let 𝑝 ≤ 𝛽𝑙,

∣∣𝜕𝑙
𝑡(𝑓 − 𝑓𝐾)∣∣

ℋ𝑝
𝜈+𝑗−𝑙

≤ ∣∣𝑣 ⋅ ∇𝑥𝜕𝑙−1
𝑡 (𝑓 − 𝑓𝐾)∣∣

ℋ𝑝
𝜈+𝑗−𝑙

+ ∣∣𝜕𝑙−1
𝑡 (𝐸 ⋅ ∇𝑣𝑓) − 𝜕𝑙−1

𝑡 (𝐸𝐾 ⋅ ∇𝑣𝑓𝐾)∣∣
ℋ𝑝

𝜈+𝑗−𝑙

≤ ∣∣𝜕𝑙−1
𝑡 (𝑓 − 𝑓𝐾)∣∣

ℋ𝑝+1
𝜈+𝑗−(𝑙−1)

+
𝑙−1
∑
𝑚=0

(𝑙 − 1
𝑚

) ∣∣𝜕𝑚
𝑡 𝐸 ⋅ ∇𝑣𝜕𝑙−1−𝑚

𝑡 𝑓 − 𝜕𝑚
𝑡 𝐸𝐾 ⋅ ∇𝑣𝜕𝑙−1−𝑚

𝑡 𝑓𝐾∣∣
ℋ𝑝

𝜈+𝑗−𝑙

≤ ∣∣𝜕𝑙−1
𝑡 (𝑓 − 𝑓𝐾)∣∣

ℋ𝑝+1
𝜈+𝑗−(𝑙−1)

+
𝑙−1
∑
𝑚=0

(𝑙 − 1
𝑚

) ∣∣𝜕𝑚
𝑡 𝐸 ⋅ ∇𝑣𝜕𝑙−1−𝑚

𝑡 𝑓 − 𝜕𝑚
𝑡 𝐸𝐾 ⋅ ∇𝑣𝜕𝑙−1−𝑚

𝑡 𝑓𝐾∣∣
ℋ𝑝

𝜈+𝑗−𝑙

≤ ∣∣𝜕𝑙−1
𝑡 (𝑓 − 𝑓𝐾)∣∣

ℋ𝑝+1
𝜈+𝑗−(𝑙−1)

+
𝑙−1
∑
𝑚=0

(𝑙 − 1
𝑚

) ⎛⎜⎜
⎝

∣∣(𝜕𝑚
𝑡 𝐸 − 𝜕𝑚

𝑡 𝐸𝐾) ⋅ ∇𝑣𝜕𝑙−1−𝑚
𝑡 𝑓∣∣

ℋ𝑝
𝜈+𝑗−𝑙

+ ∣∣𝜕𝑚
𝑡 𝐸𝐾 ⋅ ∇𝑣𝜕𝑙−1−𝑚

𝑡 (𝑓 − 𝑓𝐾)∣∣
ℋ𝑝

𝜈+𝑗−𝑙

⎞⎟⎟
⎠

≤ ∣∣𝜕𝑙−1
𝑡 (𝑓 − 𝑓𝐾)∣∣

ℋ𝑝+1
𝜈+𝑗−(𝑙−1)

+
𝑙−1
∑
𝑚=0

(𝑙 − 1
𝑚

) ⎛⎜⎜
⎝

∣∣(𝐸[𝜕𝑚
𝑡 𝑓] − 𝐸𝐾[𝜕𝑚

𝑡 𝑓𝐾]) ⋅ ∇𝑣𝜕𝑙−1−𝑚
𝑡 𝑓∣∣

ℋ𝑝
𝜈+𝑗−𝑙

+ ∣∣𝜕𝑚
𝑡 𝐸𝐾 ⋅ ∇𝑣𝜕𝑙−1−𝑚

𝑡 (𝑓 − 𝑓𝐾)∣∣
ℋ𝑝

𝜈+𝑗−𝑙

⎞⎟⎟
⎠

≤ ∣∣𝜕𝑙−1
𝑡 (𝑓 − 𝑓𝐾)∣∣

ℋ𝑝+1
𝜈+𝑗−(𝑙−1)

+
𝑙−1
∑
𝑚=0

(𝑙 − 1
𝑚

)
⎛⎜⎜⎜⎜⎜
⎝

max
𝑐∈ℕ𝑑

̄𝑐≤𝑝

∣∣𝜕𝑐
𝑥 (𝐸[𝜕𝑚

𝑡 𝑓] − 𝐸𝐾[𝜕𝑚
𝑡 𝑓𝐾])∣∣

𝕃∞(𝕋𝑑
𝐿)

∣∣𝜕𝑙−1−𝑚
𝑡 𝑓∣∣

ℋ𝑝+1
𝜈+𝑗−𝑙

+ max
𝑐∈ℕ𝑑

̄𝑐≤𝑝

∣∣𝜕𝑐
𝑥𝜕𝑚

𝑡 𝐸𝐾∣∣
𝕃∞(𝕋𝑑

𝐿)
∣∣𝜕𝑙−1−𝑚

𝑡 (𝑓 − 𝑓𝐾)∣∣
ℋ𝑝+1

𝜈+𝑗−𝑙

⎞⎟⎟⎟⎟⎟
⎠

.

(III-5.22)

Recall the assumption (III-5.20):

∀𝑚 ≤ 𝑙 − 1, 𝑝 ≤ 𝛽𝑚, ∣∣𝜕𝑚
𝑡 (𝑓 − 𝑓𝐾)∣∣

ℋ𝑝
𝜈+𝑗−𝑚

≤ 𝐶
(1 + 𝐾)𝛾𝑚+𝛽𝑚−𝑝 ,

thus

∣∣𝜕𝑙−1
𝑡 (𝑓 − 𝑓𝐾)∣∣

ℋ𝑝+1
𝜈+𝑗−(𝑙−1)

+
𝑙−1
∑
𝑚=0

(𝑙 − 1
𝑚

) max
𝑐∈ℕ𝑑

̄𝑐≤𝑝

∣∣𝜕𝑐
𝑥𝜕𝑚

𝑡 𝐸𝐾∣∣
𝕃∞(𝕋𝑑

𝐿)
∣∣𝜕𝑙−1−𝑚

𝑡 (𝑓 − 𝑓𝐾)∣∣
ℋ𝑝+1

𝜈+𝑗−𝑙

≤ 𝐶
(1 + 𝐾)𝛾𝑙−1+𝛽𝑙−1−𝑝−1 +

𝑙−1
∑
𝑚=0

(𝑙 − 1
𝑚

) max
𝑐∈ℕ𝑑

̄𝑐≤𝑝

∣∣𝜕𝑐
𝑥𝜕𝑚

𝑡 𝐸𝐾∣∣
𝕃∞(𝕋𝑑

𝐿)

𝐶
(1 + 𝐾)𝛾𝑙−1−𝑚+𝛽𝑙−1−𝑚−𝑝−1 .

By our previous estimates, ∣∣𝜕𝑐
𝑥𝜕𝑚

𝑡 𝐸𝐾∣∣
𝕃∞(𝕋𝑑

𝐿)
≤ 𝐶 for any 𝑐 ∈ ℕ𝑑 with ̄𝑐 ≤ 𝛽𝑚 −𝑑−1.

114



Thanks to the ordering 𝛽1 ≥ ⋯ ≥ 𝛽𝑙−1, this implies ∣∣𝜕𝑐
𝑥𝜕𝑚

𝑡 𝐸𝐾∣∣
𝕃∞(𝕋𝑑

𝐿)
≤ 𝐶 for any 𝑐 ∈ ℕ𝑑

with ̄𝑐 ≤ 𝛽𝑙−1 − 𝑑 − 1. Now, since we are considering 𝑝 ≤ 𝛽𝑙 ≤ 𝛽𝑙 − 𝑑 − 1, we obtain

∣∣𝜕𝑙−1
𝑡 (𝑓 − 𝑓𝐾)∣∣

ℋ𝑝+1
𝜈+𝑗−(𝑙−1)

+
𝑙−1
∑
𝑚=0

(𝑙 − 1
𝑚

) max
𝑐∈ℕ𝑑

̄𝑐≤𝑝

∣∣𝜕𝑐
𝑥𝜕𝑚

𝑡 𝐸𝐾∣∣
𝕃∞(𝕋𝑑

𝐿)
∣∣𝜕𝑙−1−𝑚

𝑡 (𝑓 − 𝑓𝐾)∣∣
ℋ𝑝+1

𝜈+𝑗−𝑙

≤ 𝐶
(1 + 𝐾)𝛾𝑙−1+𝛽𝑙−1−𝑝−1 +

𝑙−1
∑
𝑚=0

(𝑙 − 1
𝑚

) 𝐶
(1 + 𝐾)𝛾𝑙−1−𝑚+𝛽𝑙−1−𝑚−𝑝−1 .

Moreover, for any 𝑚 ≤ 𝑙 − 1, suppose that

𝛾𝑙−1 + 𝛽𝑙−1 ≤ 𝛾𝑚 + 𝛽𝑚, (III-5.23)

so that by (III-5.20),

∣∣𝜕𝑙−1
𝑡 (𝑓 − 𝑓𝐾)∣∣

ℋ𝑝+1
𝜈+𝑗−(𝑙−1)

+
𝑙−1
∑
𝑚=0

(𝑙 − 1
𝑚

) max
𝑐∈ℕ𝑑

̄𝑐≤𝑝

∣∣𝜕𝑐
𝑥𝜕𝑚

𝑡 𝐸𝐾∣∣
𝕃∞(𝕋𝑑

𝐿)
∣∣𝜕𝑙−1−𝑚

𝑡 (𝑓 − 𝑓𝐾)∣∣
ℋ𝑝+1

𝜈+𝑗−𝑙

≤ 𝐶
(1 + 𝐾)𝛾𝑙−1+𝛽𝑙−1−𝑝−1 .

It remains to estimate the first term in the sum of (III-5.22). Again, by (III-5.20) we
have

∣∣𝜕𝑚
𝑡 (𝑓 − 𝑓𝐾)∣∣

ℋ0
𝜈+𝑗−𝑚

≤ 𝐶
(1 + 𝐾)𝛾𝑚+𝛽𝑚

,

for 𝑚 ≤ 𝑙 − 1, therefore Proposition III.3 gives

max
𝑐∈ℕ𝑑

̄𝑐≤𝑝

∣∣𝜕𝑐
𝑥 (𝐸[𝜕𝑚

𝑡 𝑓] − 𝐸𝐾[𝜕𝑚
𝑡 𝑓𝐾])∣∣

𝕃∞(𝕋𝑑
𝐿)

≤ 𝐶
(1 + 𝐾)𝛾𝑚+𝛽𝑚+ 1

2 −𝑑−𝑝

≤ 𝐶
(1 + 𝐾)𝛾𝑙−1+𝛽𝑙−1+ 1

2 −𝑑−𝑝
.

Finally, using the condition (III-5.21),

∣∣𝜕𝑙
𝑡(𝑓 − 𝑓𝐾)∣∣

ℋ𝑝
𝜈+𝑗−𝑙

≤ 𝐶
(1 + 𝐾)𝛾𝑙−1+𝛽𝑙−1+min(1/2−𝑑,−1)−𝑝

≤ 𝐶
(1 + 𝐾)𝛾𝑙−1+𝛽𝑙+𝑑+1+min(1/2−𝑑,−1)−𝑝

≤ 𝐶
(1 + 𝐾)𝛾𝑙−1+𝛽𝑙+min(3/2,𝑑)−𝑝
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Set 𝛾𝑙 = 𝛾𝑙−1 + min(3/2, 𝑑). We check that this choice of 𝛾𝑙 satisfies (III-5.23):

𝛾𝑙−1 + 𝛽𝑙−1 = 𝛾𝑚 + (𝑙 − 1 − 𝑚) min (3
2

, 𝑑) + 𝛽𝑙−1

≤ 𝛾𝑚 + (𝑙 − 1 − 𝑚) min (3
2

, 𝑑) + 𝛽𝑚 − (𝑙 − 1 − 𝑚)(𝑑 + 1)

= 𝛾𝑚 + 𝛽𝑚 + (𝑙 − 1 − 𝑚) [min (3
2

, 𝑑) − (𝑑 + 1)] .

Since 𝑑 ∈ ℕ∗, we have min(3/2, 𝑑) ≤ 𝑑 + 1 and therefore

𝛾𝑙−1 + 𝛽𝑙−1 ≤ 𝛾𝑚 + 𝛽𝑚.

Moreover, 𝛾1 = 𝛼+1
2 − 𝛽1 − 𝑑 and we require 𝛾1 > 0, i.e.

𝛼 + 1
2

− 𝛽1 − 𝑑 > 0 ⟺ 𝛼 > 2(𝛽1 + 𝑑) − 1 = 2(𝑟 + 𝑑) − 1,

which is guaranteed to hold since we assume 𝛼 ≥ 2(𝑟 + 𝑑).

We recall from Section III-4.2.1 that 𝑞𝑖 is the order of the quadrature along dimension
𝑖 and that Δ𝑧𝑖 is the quadrature step along the 𝑖-th dimension, 1 ≤ 𝑖 ≤ 2𝑑. We recall as
well that the coefficients 𝐶𝐾

𝑘 , 𝑆𝐾
𝑘 are defined by (III-4.21), and the coefficients 𝐶𝐾,ℎ

𝑘 , 𝑆𝐾,ℎ
𝑘

by (III-4.22). We have the following estimates on the quadrature error:

Proposition III.5

Let 𝑗 ∈ ℕ such that 𝑗 ≥ 1 + max𝑖 𝑞𝑖, and 𝜈, 𝑟, 𝛼 ∈ ℕ such that 𝜈 + 𝑗 > 𝑑/2, 𝑟 ≥
max (3(𝜈 + 𝑗), (𝑗 − 1)(𝑑 + 1)), and 𝛼 ≥ 2(𝑟 + 𝑑). Let 𝐾 ∈ ℕ, and assume 𝑓0 ∈ ℋ𝑟+𝛼

𝜈+𝑗 .
Then there exists a constant 𝐶 > 0 such that the following holds: for 𝛿 ≥ 0, define
finite intervals 𝐼𝑑+1 ∶= [𝑎1, 𝑏1], … , 𝐼2𝑑 = [𝑎𝑑, 𝑏𝑑] and 𝐼𝑣 ∶= 𝐼𝑑+1 × ⋯ × 𝐼2𝑑 such that

||𝑓0||ℋ0
𝜈(𝕋𝑑

𝐿×(ℝ𝑑\𝐼𝑣)) ≤ 𝛿.

Then for all 𝑘 ∈ (ℤ𝑑)∗ and 𝐾 ∈ ℕ∗, we have

∣𝐶𝐾
𝑘 (𝑡) − 𝐶𝐾,ℎ

𝑘 (𝑡)∣ ≤ 𝐶𝛿 + 𝐶
2𝑑

∑
𝑖=1

(1 + 𝐶2𝜋(𝑞𝑖 + 1)
ln(𝑞𝑖 + 2)

∣ 𝑘
𝐿

∣)
𝑞𝑖+1

Δ𝑧𝑞𝑖
𝑖 (III-5.24)
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and

∣𝑆𝐾
𝑘 (𝑡) − 𝑆𝐾,ℎ

𝑘 (𝑡)∣ ≤ 𝐶𝛿 + 𝐶
2𝑑

∑
𝑖=1

(1 + 𝐶2𝜋(𝑞𝑖 + 1)
ln(𝑞𝑖 + 2)

∣ 𝑘
𝐿

∣)
𝑞𝑖+1

Δ𝑧𝑞𝑖
𝑖 (III-5.25)

where the estimates are uniform in time, and 𝐶 does not depend on Δ𝑧𝑖.
As a consequence, for 𝐶 large enough, we have the following estimates:

∣𝐶𝐾
𝑘 (𝑡) − 𝐶𝐾,ℎ

𝑘 (𝑡)∣ ≤ 𝐶𝛿 + 𝐶
2𝑑

∑
𝑖=1

(1 + 𝐶|𝑘|)𝑞𝑖+1 Δ𝑧𝑞𝑖
𝑖 (III-5.26)

and

∣𝑆𝐾
𝑘 (𝑡) − 𝑆𝐾,ℎ

𝑘 (𝑡)∣ ≤ 𝐶𝛿 + 𝐶
2𝑑

∑
𝑖=1

(1 + 𝐶|𝑘|)𝑞𝑖+1 Δ𝑧𝑞𝑖
𝑖 . (III-5.27)

Proof. We prove only the error estimate for ∣𝐶𝐾
𝑘 (𝑡) − 𝐶𝐾,ℎ

𝑘 (𝑡)∣, since the treatment is
exactly the same for ∣𝑆𝐾

𝑘 (𝑡) − 𝑆𝐾,ℎ
𝑘 (𝑡)∣.

First of all, by the regularity assumption on 𝑓0 we know from Proposition III.4 that
𝐸𝐾 ∈ 𝐶𝑗([0, 𝑇 ] × ℝ𝑑). Therefore, the characteristics (𝑋𝐾, 𝑉 𝐾) ∈ 𝐶𝑗([0, 𝑇 ] × 𝕋𝑑 × ℝ𝑑),
so that the 𝑗-th space derivative is continuous in time.

The quadratures in velocity will be performed on the intervals 𝐼𝑑+𝑖 = [𝑎𝑖, 𝑏𝑖], 𝑖 =
1, … , 𝑑, and the quadratures in space will be performed on 𝕋𝑑. To make notations clearer
and more general, define 𝐼𝑖 ∶= [0, 𝐿𝑖] for 𝑖 = 1, … , 𝑑.

For 𝑛 = 1, ⋯ , 2𝑑, we define

̃𝑧𝑛 ∶= (𝑧𝑛, … , 𝑧2𝑑) ∈ 𝐼𝑛 × ⋯ × 𝐼2𝑑,

𝑔𝑡( ̃𝑧𝑛) ∶= ∫
𝐼1×⋯×𝐼𝑛−1

cos (2𝜋 𝑘
𝐿

⋅ 𝑋𝐾(𝑡; 0, 𝑧)) 𝑓0(𝑧)𝑑𝑧1 ⋯ 𝑑𝑧𝑛−1,

ℎ𝑡( ̃𝑧𝑛) = ∑
𝑗1,…,𝑗𝑛−1

𝑤𝑗1
1 ⋯ 𝑤𝑗𝑛−1

𝑛−1 cos (2𝜋 𝑘
𝐿

⋅ 𝑋𝐾(𝑡; 0, 𝑧𝑗1
1 , ⋯ , 𝑧𝑗𝑛−1

𝑛−1 , ̃𝑧𝑛)) 𝑓0(𝑧𝑗1
1 , ⋯ , 𝑧𝑗𝑛−1

𝑛−1 , ̃𝑧𝑛).

We will prove the estimates (III-5.24) and (III-5.25) by induction on the number of
dimensions.
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Base case For a fixed ̃𝑧2 ∈ 𝐼2 × ⋯ × 𝐼2𝑑, the quadrature along the first dimension gives

∣∫
𝐼1

cos (2𝜋 𝑘
𝐿

⋅ 𝑋𝐾(𝑡; 0, 𝑧1, ̃𝑧2)) 𝑓(0, 𝑧1, ̃𝑧2)𝑑𝑧1 − ∑
𝑗1

𝑤𝑗1
1 cos (2𝜋 𝑘

𝐿
⋅ 𝑋𝐾(𝑡; 0, 𝑧𝑗1

1 , ̃𝑧2)) 𝑓0(𝑧𝑗1
1 , ̃𝑧2)∣

≤ 𝐶Δ𝑧1
𝑞1 ∣∣𝜕𝑞1+1

𝑧1 [cos (2𝜋 𝑘
𝐿

⋅ 𝑋𝐾(𝑡; 0, ⋅, ̃𝑧2)) 𝑓0(⋅, ̃𝑧2)]∣∣
𝕃∞(𝐼1)

.

(III-5.28)

We proceed to estimate the right-hand side, and consider a derivative along the 𝑛-th
dimension instead of only along the first dimension:

𝜕𝑞𝑛+1
𝑧𝑛 [cos (2𝜋 𝑘

𝐿
⋅ 𝑋𝐾(𝑡; 0, 𝑧)) 𝑓0(𝑧)] =

𝑞𝑛+1

∑
𝑙=0

(𝑞𝑛 + 1
𝑙

)𝜕𝑞𝑛+1−𝑙
𝑧𝑛 𝑓0(𝑧)𝜕𝑙

𝑧𝑛
cos (2𝜋 𝑘

𝐿
⋅ 𝑋𝐾(𝑡; 0, 𝑧)) .

(III-5.29)

By the Faà di Bruno formula (see [2, Sect. 24.1.2]), we have

𝜕𝑙
𝑧𝑛

cos (2𝜋 𝑘
𝐿

⋅ 𝑋𝐾(𝑡; 0, 𝑧))

=
𝑙

∑
𝑚=0

cos(𝑚) (2𝜋 𝑘
𝐿

⋅ 𝑋𝐾(𝑡; 0, 𝑧)) ∑(𝑙; 𝑎1, … , 𝑎𝑙)′
𝑙

∏
𝑐=1

(2𝜋 𝑘
𝐿

⋅ 𝜕𝑐
𝑧𝑛

𝑋𝐾(𝑡; 0, 𝑧))
𝑎𝑐

,

where the unindexed sum is performed over all 𝑙-tuples (𝑎1, … , 𝑎𝑙) such that

𝑎1 + 2𝑎2 + ⋯ + 𝑙𝑎𝑙 = 𝑙 and 𝑎1 + 𝑎2 + ⋯ + 𝑎𝑙 = 𝑚.

The sum ∑(𝑙; 𝑎1, … , 𝑎𝑙)′ is also called a Stirling number of the Second kind, of parameters
(𝑛, 𝑚). It counts the number of ways of partitioning a set of 𝑙 elements into 𝑚 non-empty
subsets. We have

∣𝜕𝑙
𝑧𝑛

cos (2𝜋 𝑘
𝐿

⋅ 𝑋𝐾(𝑡; 0, 𝑧))∣ ≤
𝑙

∑
𝑚=0

∑(𝑙; 𝑎1, … , 𝑎𝑙)′
𝑙

∏
𝑐=1

∣2𝜋 𝑘
𝐿

⋅ 𝜕𝑐
𝑧𝑛

𝑋𝐾(𝑡; 0, 𝑧)∣
𝑎𝑐

≤
𝑙

∑
𝑚=0

∑(𝑙; 𝑎1, … , 𝑎𝑙)′
𝑙

∏
𝑐=1

∣2𝜋 𝑘
𝐿

∣
𝑎𝑐

2
∣𝜕𝑐

𝑧𝑛
𝑋𝐾(𝑡; 0, 𝑧)∣

𝑎𝑐

≤ (2𝜋)𝑙 ∣ 𝑘
𝐿

∣
𝑙

2

𝑙
∑
𝑚=0

∑(𝑙; 𝑎1, … , 𝑎𝑙)′
𝑙

∏
𝑐=1

∣𝜕𝑐
𝑧𝑛

𝑋𝐾(𝑡; 0, 𝑦, 𝑧)∣
𝑎𝑐 ,

where the second inequality has been obtained by the discrete Cauchy-Schwarz inequality.

Since the characteristics 𝑋𝐾 is of class 𝐶𝑗([0, 𝑇 ] × 𝕋𝑑
𝐿 × ℝ𝑑), with 𝑗 ≥ max𝑖 𝑞𝑖 + 1,

we know there exists a constant 𝐶𝑓0
(𝐾) that depends possibly on 𝐾 such that for all

ℕ ∋ 𝑐 ≤ 𝑞𝑛 + 1,
∣∣𝜕𝑐

𝑧𝑛
𝑋𝐾∣∣

𝕃∞([0,𝑇 ]×𝕋𝑑
𝐿×𝐼𝑣)

≤ 𝐶𝑓0
(𝐾).
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However, we want this constant 𝐶𝑓0
to be independent of 𝐾, and to be able to choose

such a constant, we notice that as 𝐾 → ∞, we recover the non-truncated Vlasov-Poisson
system’s characteristics. For these characteristics, thanks to the regularity assumption,
we know that there exists a constant denoted 𝐶𝑓0

(∞) such that

∣∣𝜕𝑐
𝑧𝑛

𝑋∣∣
𝕃∞([0,𝑇 ]×𝕋𝑑

𝐿×𝐼𝑣)
≤ 𝐶𝑓0

(∞) < ∞.

So we can build a sequence of constants {𝐶𝑓0
(𝐾)}𝐾≥1 which is bounded. Then define

𝐶𝑓0
∶= max𝐾≥1 𝐶𝑓0

(𝐾), and we have

∣∣𝜕𝑐
𝑧𝑛

𝑋𝐾∣∣
𝕃∞([0,𝑇 ]×𝕋𝑑

𝐿×𝐼𝑣)
≤ 𝐶𝑓0

.

Hence, for all 𝑡 ∈ [0, 𝑇 ],

∣𝜕𝑙
𝑧𝑛

cos (2𝜋 𝑘
𝐿

⋅ 𝑋𝐾(𝑡; 0, 𝑧))∣ ≤ 𝐶𝑙
𝑓0

(2𝜋)𝑙 ∣ 𝑘
𝐿

∣
𝑙 𝑙

∑
𝑚=0

∑(𝑙; 𝑎1, … , 𝑎𝑙)′.

The remaining sums correspond to the Bell number 𝐵𝑙, and it counts the number of
ways to partition a set that has exactly 𝑙 elements. We have the following bound (see
[17]):

𝐵𝑙 ≤ ( 0.792𝑙
ln(𝑙 + 1)

)
𝑙

≤ 𝑙𝑙

(ln(𝑙 + 1))𝑙 .

Therefore,

∣𝜕𝑙
𝑧𝑛

cos (2𝜋 𝑘
𝐿

⋅ 𝑋𝐾(𝑡; 0, 𝑧))∣ ≤ 𝐶𝑙
𝑓0

( 2𝜋𝑙
ln(𝑙 + 1)

)
𝑙

∣ 𝑘
𝐿

∣
𝑙

≤ 𝐶𝑙
𝑓0

(2𝜋(𝑞𝑛 + 1)
ln(𝑞𝑛 + 2)

)
𝑙

∣ 𝑘
𝐿

∣
𝑙
.

By regularity of the initial condition 𝑓0, we can choose the constant 𝐶𝑓0
large enough

so that for all 𝑛 = 1, ⋯ , 2𝑑,

∣∣𝜕𝑙
𝑧𝑛

𝑓0∣∣
𝕃∞(𝐼1×⋯×𝐼2𝑑)

≤ 𝐶𝑓0
, 𝑙 = 0, … , 𝑞𝑛 + 1.

We then get from (III-5.29)

∣𝜕𝑞𝑛+1
𝑧𝑛 [cos (2𝜋 𝑘

𝐿
⋅ 𝑋𝐾(𝑡; 0, 𝑧)) 𝑓0(𝑧)]∣

≤ 𝐶𝑓0

𝑞𝑛+1

∑
𝑙=0

(𝑞𝑛 + 1
𝑙

) ∣∣𝜕𝑙
𝑧𝑛

cos (2𝜋 𝑘
𝐿

⋅ 𝑋(𝑡; 0, 𝑧))∣∣
𝕃∞(𝐼1×⋯×𝐼2𝑑)

≤ 𝐶𝑓0
(1 + 𝐶𝑓0

2𝜋(𝑞𝑛 + 1)
ln(𝑞𝑛 + 2)

∣ 𝑘
𝐿

∣)
𝑞𝑛+1
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Note that the right-hand side does not depend on 𝑦 or 𝑣, hence

∣∣𝜕𝑞𝑛+1
𝑧𝑛 [cos (2𝜋 𝑘

𝐿
⋅ 𝑋𝐾(𝑡; 0, ⋅)) 𝑓0(⋅)]∣∣

𝕃∞(𝐼1×⋯×𝐼2𝑑)
≤ 𝐶𝑓0

(1 + 𝐶𝑓0

2𝜋(𝑞𝑛 + 1)
ln(𝑞𝑛 + 2)

∣ 𝑘
𝐿

∣)
𝑞𝑛+1

.

(III-5.30)
Plugging this estimate with 𝑛 = 1 back into (III-5.28), we obtain

∣∫
𝐼1

cos (2𝜋 𝑘
𝐿

⋅ 𝑋𝐾(𝑡; 0, 𝑧1, ̃𝑧2)) 𝑓0(𝑧1, ̃𝑧2)𝑑𝑧1 − ∑
𝑗1

𝑤𝑗1
1 cos (2𝜋 𝑘

𝐿
⋅ 𝑋𝐾(𝑡; 0, 𝑧𝑗1

1 , ̃𝑧2)) 𝑓0(𝑧𝑗1
1 , ̃𝑧2)∣

= |𝑔𝑡( ̃𝑧2) − ℎ𝑡( ̃𝑧2)| ≤ 𝐶 (1 + 2𝜋(𝑞1 + 1)
ln(𝑞1 + 2)

∣ 𝑘
𝐿

∣)
𝑞1+1

Δ𝑧𝑞1
1 ,

(III-5.31)
where the constant 𝐶 does not depend on 𝑘, Δ𝑧1, 𝑞1, ̃𝑧2.

Induction step We have

∣𝑔𝑡( ̃𝑧𝑛+1) − ℎ𝑡( ̃𝑧𝑛+1)∣ = ∣∫
𝐼𝑛

𝑔𝑡(𝑧𝑛, ̃𝑧𝑛+1)𝑑𝑧𝑛 − ∑
𝑗𝑛

𝑤𝑗𝑛𝑛 ℎ𝑡(𝑧
𝑗𝑛𝑛 , ̃𝑧𝑛+1)∣

≤ ∫
𝐼𝑛

∣𝑔𝑡(𝑧𝑛, ̃𝑧𝑛+1) − ℎ𝑡(𝑧𝑛, ̃𝑧𝑛+1)∣ 𝑑𝑧𝑛 + ∣∫
𝐼𝑛

ℎ𝑡(𝑧𝑛, ̃𝑧𝑛+1)𝑑𝑧𝑛 − ∑
𝑗𝑛

𝑤𝑗𝑛𝑛 ℎ𝑡(𝑧
𝑗𝑛𝑛 , ̃𝑧𝑛+1)∣ .

(III-5.32)

The first term on the right-hand side can be bounded using the previous step in the
induction, which is assumed to give the following estimate:

|𝑔𝑡( ̃𝑧𝑛) − ℎ𝑡( ̃𝑧𝑛)| ≤ 𝐶
𝑛−1
∑
𝑖=1

(1 + 𝐶2𝜋(𝑞𝑖 + 1)
ln(𝑞𝑖 + 2)

∣ 𝑘
𝐿

∣)
𝑞𝑖+1

Δ𝑧𝑞𝑖
𝑖 .

Since the right-hand side does not depend on ̃𝑧𝑛, we get

∫
𝐼𝑛

∣𝑔𝑡(𝑧𝑛, ̃𝑧𝑛+1) − ℎ𝑡(𝑧𝑛, ̃𝑧𝑛+1)∣ 𝑑𝑧𝑛 ≤ |𝐼𝑛| ||𝑔𝑡( ̃𝑧𝑛) − ℎ𝑡( ̃𝑧𝑛)||𝕃∞(𝐼𝑛×⋯×𝐼2𝑑)

≤ 𝐶
𝑛−1
∑
𝑖=1

(1 + 𝐶2𝜋(𝑞𝑖 + 1)
ln(𝑞𝑖 + 2)

∣ 𝑘
𝐿

∣)
𝑞𝑖+1

Δ𝑧𝑞𝑖
𝑖 ,

where the constant 𝐶 does not depend on 𝑘, Δ𝑧𝑖, 𝑞𝑖, ̃𝑧𝑛+1.

It remains only to estimate the second term on the right-hand side of (III-5.32). We
notice that it correspond to the quadrature error of the function 𝑧𝑛 ↦ ℎ𝑡(𝑧𝑛, ̃𝑧𝑛+1) over
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𝐼𝑛. Thus,

∣∫
𝐼𝑛

ℎ𝑡(𝑧𝑛, ̃𝑧𝑛+1)𝑑𝑧𝑛 − ∑
𝑗𝑛

𝑤𝑗𝑛𝑛 ℎ𝑡(𝑧
𝑗𝑛𝑛 , ̃𝑧𝑛+1)∣ ≤ 𝐶 ∣∣𝜕𝑞𝑛+1

𝑧𝑛 ℎ𝑡(⋅, ̃𝑧𝑛+1)∣∣
𝕃∞(𝐼𝑛)

Δ𝑧𝑞𝑛𝑛 .

(III-5.33)
We have

𝜕𝑞𝑛+1
𝑧𝑛 ℎ𝑡(𝑧𝑛, ̃𝑧𝑛+1) = 𝜕𝑞𝑛+1

𝑧𝑛 ℎ𝑡( ̃𝑧𝑛)

= ∑
𝑗1,⋯,𝑗𝑛−1

𝑤𝑗1
1 ⋯ 𝑤𝑗𝑛−1

𝑛−1 𝜕𝑞𝑛+1
𝑧𝑛 [cos (2𝜋 𝑘

𝐿
⋅ 𝑋𝐾(𝑡; 0, 𝑧𝑗1

1 , ⋯ , 𝑧𝑗𝑛−1
𝑛−1 , ̃𝑧𝑛)) 𝑓0(𝑧𝑗1

1 , ⋯ , 𝑧𝑗𝑛−1
𝑛−1 , ̃𝑧𝑛)] ,

and hence

∣∣𝜕𝑞𝑛+1
𝑧𝑛 ℎ𝑡(⋅, ̃𝑧𝑛+1)∣∣

𝕃∞(𝐼𝑛)

≤ ∑
𝑗1,⋯,𝑗𝑛−1

∣𝑤𝑗1
1 ⋯ 𝑤𝑗𝑛−1𝑛1 ∣

∣∣𝜕𝑞𝑛+1
𝑧𝑛 [cos (2𝜋 𝑘

𝐿
⋅ 𝑋𝐾(𝑡; 0, 𝑧𝑗1

1 , ⋯ , 𝑧𝑗𝑛−1
𝑛−1 , ̃𝑧𝑛)) 𝑓0(𝑧𝑗1

1 , ⋯ , 𝑧𝑗𝑛−1
𝑛−1 , ̃𝑧𝑛)]∣∣

𝕃∞
𝑧𝑛(𝐼𝑛)

≤ ∑
𝑗1,⋯,𝑗𝑛−1

∣𝑤𝑗1
1 ⋯ 𝑤𝑗𝑛−1

𝑛−1 ∣ ∣∣𝜕𝑞𝑛+1
𝑧𝑛 [cos (2𝜋 𝑘

𝐿
⋅ 𝑋𝐾(𝑡; 0, ⋅)) 𝑓0(⋅)]∣∣

𝕃∞(𝐼1×⋯×𝐼2𝑑)
.

By (III-5.30), we get

∣∣𝜕𝑞𝑛+1
𝑧𝑛 ℎ𝑡(⋅, ̃𝑧𝑛+1)∣∣

𝕃∞(𝐼𝑛)
≤ 𝐶 (1 + 𝐶2𝜋(𝑞𝑛 + 1)

ln(𝑞𝑛 + 2)
∣ 𝑘
𝐿

∣)
𝑞𝑛+1

∑
𝑗1,⋯,𝑗𝑛−1

∣𝑤𝑗1
1 ⋯ 𝑤𝑗𝑛−1

𝑛−1 ∣ .

Moreover, since the weights are nonnegative,

∑
𝑗1,⋯,𝑗𝑛−1

∣𝑤𝑗1
1 ⋯ 𝑤𝑗𝑛−1

𝑛−1 ∣ = ∑
𝑗1,⋯,𝑗𝑛−1

𝑤𝑗1
1 ⋯ 𝑤𝑗𝑛−1

𝑛−1 .

The right-hand side corresponds to an approximation of the constant function equal
to one on the hyperrectangle 𝐼1 × ⋯ × 𝐼𝑛−1, hence the quadrature is exact and the value
of the sum corresponds to the volume of the hyperrectangle. Therefore,

∣∣𝜕𝑞𝑛+1
𝑧𝑛 ℎ𝑡(⋅, ̃𝑧𝑛+1)∣∣

𝕃∞(𝐼𝑛)
≤ 𝐶 (1 + 𝐶2𝜋(𝑞𝑛 + 1)

ln(𝑞𝑛 + 2)
∣ 𝑘
𝐿

∣)
𝑞𝑛+1

.

We can plug this into (III-5.33) to get

∣∫
𝐼𝑛

ℎ𝑡(𝑧𝑛, ̃𝑧𝑛+1)𝑑𝑧𝑛 − ∑
𝑗𝑛

𝑤𝑗𝑛𝑛 ℎ𝑡(𝑧𝑗𝑛 , ̃𝑧𝑛+1)∣ ≤ 𝐶 (1 + 𝐶2𝜋(𝑞𝑛 + 1)
ln(𝑞𝑛 + 2)

∣ 𝑘
𝐿

∣)
𝑞𝑛+1

Δ𝑧𝑞𝑛𝑛 .
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Finally, we obtain from (III-5.32)

∣𝑔𝑡( ̃𝑧𝑛+1) − ℎ𝑡( ̃𝑧𝑛+1)∣ ≤ 𝐶
𝑛

∑
𝑖=1

(1 + 𝐶2𝜋(𝑞𝑖 + 1)
ln(𝑞𝑖 + 2)

∣ 𝑘
𝐿

∣)
𝑞𝑖+1

Δ𝑧𝑞𝑖
𝑖 .

This achieves the induction step, so that this inequality holds for all 𝑛 = 1, … , 2𝑑.
When 𝑛 = 2𝑑,

∣∫
𝕋𝑑

𝐿×𝐼𝑣

cos (2𝜋 𝑘
𝐿

⋅ 𝑋𝐾(𝑡; 0, 𝑧)) 𝑓0(𝑧)𝑑𝑧 − 𝐶𝐾,ℎ
𝑘 (𝑡)∣ ≤ 𝐶

2𝑑
∑
𝑖=1

(1 + 𝐶2𝜋(𝑞𝑖 + 1)
ln(𝑞𝑖 + 2)

∣ 𝑘
𝐿

∣)
𝑞𝑖+1

Δ𝑧𝑞𝑖
𝑖 ,

where the constant 𝐶 does not depend on 𝑘, Δ𝑥, Δ𝑣, 𝑞𝑥, 𝑞𝑣. Finally, by definition of the
intervals 𝐼𝑖, we have

𝐶𝑘(𝑡) = ∫
𝕋𝑑×𝐼𝑣

cos (2𝜋 𝑘
𝐿

⋅ 𝑋𝐾(𝑡; 0, 𝑧)) 𝑓0(𝑧)𝑑𝑧+∫
𝕋𝑑×(ℝ𝑑\𝐼𝑣)

cos (2𝜋 𝑘
𝐿

⋅ 𝑋𝐾(𝑡; 0, 𝑧)) 𝑓0(𝑧)𝑑𝑧.

The second term on the left-hand side can be handled by using the fact that 𝑓0 ∈
ℋ𝑟+2𝜈+1

𝜈 , so that

∣∫
𝕋𝑑×(ℝ𝑑\𝐼𝑣)

cos (2𝜋 𝑘
𝐿

⋅ 𝑋𝐾(𝑡; 0, 𝑧)) 𝑓0(𝑧)𝑑𝑧∣

≤ ∫
𝕋𝑑×(ℝ𝑑\𝐼𝑣)

|𝑓0(𝑧)|𝑑𝑧

≤ (∫
𝕋𝑑×(ℝ𝑑\𝐼𝑣)

1
(1 + |𝑣|2)𝜈 𝑑𝑥𝑑𝑣) (∫

𝕋𝑑×(ℝ𝑑\𝐼𝑣)
(1 + |𝑣|2)𝜈|𝑓0(𝑥, 𝑣)|2𝑑𝑥𝑑𝑣)

≤ 𝐶 ||𝑓0||ℋ0
𝜈(𝕋𝑑

𝐿×(ℝ𝑑\𝐼𝑣)) ≤ 𝐶𝛿

This achieves to show our claimed estimates.

Finally, we are able to prove the convergence result.

Proof of Theorem III.2. We first show that any 𝑟-order time integration scheme for second
order ODEs can be applied, then proceed to the claimed estimate. Throughout this proof
we denote by 𝐶 a quantity which is independent from 𝑡, 𝑛, Δ𝑡, Δ𝑧𝑖, 𝐾, its value may
change from line to line.

Recall the the characteristics of the Vlasov equation with a truncated Fourier kernel:

⎧{
⎨{⎩

𝑑
𝑑𝑡

𝑋𝐾(𝑡; 0, 𝑥, 𝑣) = 𝑉 𝐾(𝑡; 0, 𝑥, 𝑣)

𝑑
𝑑𝑡

𝑉 𝐾(𝑡; 0, 𝑥, 𝑣) = 𝐸𝐾(𝑡, 𝑋𝐾(𝑡; 0, 𝑥, 𝑣))
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where 𝐸𝐾 is defined by (III-4.17). Therefore,

𝑑2

𝑑𝑡2 𝑋𝐾(𝑡; 0, 𝑥, 𝑣) = 𝐸𝐾(𝑡, 𝑋𝐾(𝑡; 0, 𝑥, 𝑣)).

However this function 𝐸𝐾 is not a function we can compute in practice in the Weighted
Particle method, since it requires a knowledge of the mapping (𝑥, 𝑣) → (𝑋𝐾, 𝑉 𝐾)(𝑡; 𝑡0, 𝑥, 𝑣)
for all (𝑥, 𝑣) ∈ 𝕋𝑑

𝐿 × ℝ𝑑 in order to compute 𝐶𝐾
𝑘 (𝑡) and 𝑆𝐾

𝑘 (𝑡). We instead use the ap-
proximations 𝐶𝐾,ℎ

𝑘 , 𝑆𝐾,ℎ
𝑘 of 𝐶𝐾

𝑘 , 𝑆𝐾
𝑘 , given in (III-4.22):

𝐶𝐾,ℎ
𝑘 (𝑡) = ∑

𝑗∈𝐽
cos (2𝜋 𝑘

𝐿
⋅ 𝑋𝐾(𝑡; 0, 𝑧𝑗)) 𝑓(0, 𝑧𝑗)𝑤𝑗,

𝑆𝐾,ℎ
𝑘 (𝑡) = ∑

𝑗∈𝐽
sin (2𝜋 𝑘

𝐿
⋅ 𝑋𝐾(𝑡; 0, 𝑧𝑗)) 𝑓(0, 𝑧𝑗)𝑤𝑗.

(III-5.34)

We recall that from these approximate coefficients, we defined in (III-4.23) an approximate
kernel 𝐸𝐾,ℎ:

𝐸𝐾,ℎ(𝑡, 𝑥) = 1
∣𝕋𝑑

𝐿∣
∑

𝑘∈(ℤ𝑑)∗

|𝑘|≤𝐾

1
2𝜋 ∣ 𝑘

𝐿 ∣2
𝑘
𝐿

[sin (2𝜋𝑘 ⋅ 𝑥
𝐿

) 𝐶𝐾,ℎ
𝑘 (𝑡) − cos (2𝜋𝑘 ⋅ 𝑥

𝐿
) 𝑆𝐾,ℎ

𝑘 (𝑡)] .

Let 𝑝 = 1, … , 𝑃, the quantity 𝑋𝐾
𝑝 (𝑡𝑛), defined in (III-4.25), is the solution to the second-

order ODE:
𝑑2

𝑑𝑡2 𝑋𝐾
𝑝 (𝑡) = 𝐸𝐾,ℎ(𝑡, 𝑋𝐾

𝑝 (𝑡)), 𝑋𝐾
𝑝 (𝑡0) = 𝑥𝑝.

Moreover we have
𝐸𝐾(𝑡, 𝑥) = 𝐸𝐾,ℎ(𝑡, 𝑥) + (𝛿𝐸)𝐾(𝑡, 𝑥) (III-5.35)

where

(𝛿𝐸)𝐾(𝑡, 𝑦) ∶= 𝐸𝐾(𝑡, 𝑦) − 𝐸𝐾,ℎ(𝑡, 𝑦)

= 1
∣𝕋𝑑

𝐿∣
∑

𝑘∈(ℤ𝑑)∗

|𝑘|≤𝐾

1
2𝜋 ∣ 𝑘

𝐿 ∣2
𝑘
𝐿

[sin (2𝜋𝑘 ⋅ 𝑦
𝐿

) (𝐶𝐾,ℎ
𝑘 − 𝐶𝐾

𝑘 )(𝑡) − cos (2𝜋𝑘 ⋅ 𝑦
𝐿

) (𝑆𝐾,ℎ
𝑘 − 𝑆𝐾

𝑘 )(𝑡)]
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Thus we deduce

|(𝛿𝐸)𝐾(𝑡, 𝑦)| ≤ 1
∣𝕋𝑑

𝐿∣
∑

𝑘∈(ℤ𝑑)∗

|𝑘|≤𝐾

1
2𝜋 ∣ 𝑘

𝐿 ∣2
∣ 𝑘
𝐿

∣ (∣𝐶𝐾,ℎ
𝑘 − 𝐶𝐾

𝑘 ∣ (𝑡) + ∣𝑆𝐾,ℎ
𝑘 − 𝑆𝐾

𝑘 ∣ (𝑡))

≤ 𝐶 ∑
𝑘∈(ℤ𝑑)∗

|𝑘|≤𝐾

1
|𝑘|

(∣(𝐶𝐾,ℎ
𝑘 − 𝐶𝐾

𝑘 )∣ (𝑡) + ∣(𝑆𝐾,ℎ
𝑘 − 𝑆𝐾

𝑘 )∣ (𝑡))

≤ 𝐶𝐾𝑑𝛿 + 𝐶
2𝑑

∑
𝑖=1

Δ𝑧𝑞𝑖
𝑖 ∑

𝑘∈(ℤ𝑑)∗

|𝑘|≤𝐾

(1 + 𝐶|𝑘|)𝑞𝑖+1

|𝑘|

≤ 𝐶𝐾𝑑 (𝛿 +
2𝑑

∑
𝑖=1

Δ𝑧𝑞𝑖
𝑖 𝐾𝑞𝑖) =∶ ℰ(𝐾, Δ𝑥, Δ𝑣) (III-5.36)

where the third inequality is from (III-5.26) and (III-5.27). The exact characteristics
𝑋𝐾(𝑡; 𝑡0, 𝑥𝑝, 𝑣𝑝), defined in (III-4.20), then satisfy

𝑑2

𝑑𝑡2 𝑋𝐾(𝑡; 𝑡0, 𝑥𝑝, 𝑣𝑝) = 𝐸𝐾,ℎ(𝑋𝐾(𝑡; 𝑡0, 𝑥𝑝, 𝑣𝑝)) + (𝛿𝐸)𝐾(𝑡, 𝑋𝐾(𝑡; 𝑡0, 𝑥𝑝, 𝑣𝑝)).

We recall inequality (III-4.27), so that we can prove the claimed result in three steps,
each one corresponding to a line of this inequality. Each line corresponds to a different
type of approximation: the first one is the time discretization error, the second one the
phase-space discretization error, and the third one the kernel truncature error.

Because 𝐸𝐾,ℎ is more appropriately dealt with by vector variables, we use the follow-
ing notations: 𝕍𝐾(𝑡) ∶= 𝑑

𝑑𝑡𝕏𝐾(𝑡), 𝒳𝐾(𝑡) ∶= (𝑋𝐾(𝑡; 𝑡0, 𝑥1, 𝑣1), … , 𝑋𝐾(𝑡; 𝑡0, 𝑥𝑃, 𝑣𝑃)), and
𝒱𝐾(𝑡) ∶= 𝑑

𝑑𝑡𝒳𝐾(𝑡).

Step 1: time discretization error Notice that the time dependence of the function
𝐸𝐾,ℎ is only due to the time dependence of the finite-dimensional vector 𝕏𝐾(𝑡) ∈ ℝ𝑑𝑃.
Therefore we may write 𝐶𝐾,ℎ

𝑘 (𝑡) ≡ 𝐶𝐾,ℎ
𝑘 (𝕏𝐾(𝑡)) by abuse of notations, in which case

𝐶𝐾,ℎ
𝑘 (x) is a 𝐶∞(ℝ𝑑𝑃, ℝ) function of x. It is possible to write 𝑑2

𝑑𝑡2 𝕏𝐾(𝑡) = E𝐾,ℎ(𝕏𝐾(𝑡))
for some function

ℝ𝑑𝑃 → ℝ𝑑𝑃

x = (𝑥1, … , 𝑥𝑃) ↦ E𝐾,ℎ(x) = (E𝐾,ℎ
1 (x), … , E𝐾,ℎ

𝑃 (x))

where, for 𝑖 = 1, … , 𝑃 we let 𝑥𝑖 ∈ ℝ𝑑 and

ℝ𝑑 ∋ E𝐾,ℎ
𝑖 (x) = 1

∣𝕋𝑑
𝐿∣

∑
𝑘∈(ℤ𝑑)∗

|𝑘|≤𝐾

1
2𝜋 ∣ 𝑘

𝐿 ∣2
𝑘
𝐿

[sin (2𝜋𝑘 ⋅ 𝑥𝑖
𝐿

) 𝐶𝐾,ℎ
𝑘 (x) − cos (2𝜋𝑘 ⋅ 𝑥𝑖

𝐿
) 𝑆𝐾,ℎ

𝑘 (x)] .
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The coefficients 𝐶𝐾,ℎ
𝑘 (x) and 𝑆𝐾,ℎ

𝑘 (x) are defined by

𝐶𝐾,ℎ
𝑘 (x) =

𝑃
∑
𝑝=1

cos (2𝜋𝑘 ⋅
x𝑝

𝐿
) 𝛽𝑝,

𝑆𝐾,ℎ
𝑘 (x) =

𝑃
∑
𝑝=1

sin (2𝜋𝑘 ⋅
x𝑝

𝐿
) 𝛽𝑝.

Therefore, the mapping (x ↦ E𝐾(x)) ∈ 𝐶∞(ℝ𝑑𝑃, ℝ𝑑𝑃). Moreover, from the definition
of the characteristics (𝕏𝐾, 𝕍𝐾), we have

⎧{
⎨{⎩

𝑑
𝑑𝑡

𝕏𝐾(𝑡) = 𝕍𝐾(𝑡)

𝑑
𝑑𝑡

𝕍𝐾(𝑡) = E𝐾,ℎ(𝕏𝐾(𝑡))
(III-5.37)

The right-hand side is a 𝐶∞(ℝ2𝑑𝑃, ℝ2𝑑𝑃) function of (𝕏𝐾(𝑡), 𝕍𝐾(𝑡)), therefore we
know that the characteristics 𝑡 ↦ (𝕏𝐾(𝑡), 𝕍𝐾(𝑡)) are 𝐶∞([0, 𝑇 ]).

In order to apply the error estimate for the time integration scheme to solve second-
order ODE, we recall that the error depends on the (𝛾 + 1)-th derivative of the function
𝑥 ↦ E𝐾,ℎ(𝑥). If the time integration scheme solves first-order ODEs, the error would
depend on the (𝛾 + 1) − 𝑡ℎ derivative of the function (𝑥, 𝑣) ↦ (𝑣, E𝐾,ℎ(𝑥)).

It can be shown with the Faà di Bruno formula that for any 𝑙 ∈ ℕ𝑑𝑃, |𝑙| ≤ 𝛾,

∣∣𝜕𝑙
x

[sin (2𝜋𝑘 ⋅ 𝑥𝑖
𝐿

) 𝐶𝐾,ℎ
𝑘 (x) − cos (2𝜋𝑘 ⋅ 𝑥𝑖

𝐿
) 𝑆𝐾,ℎ

𝑘 (x)]∣∣
𝕃∞(ℝ𝑑𝑃)

≤ 𝐶𝐾𝛾+1, (III-5.38)

where the constant 𝐶 does not depend on 𝐾.

Therefore, no matter if the time integration scheme approximates first-order or second-
order ODEs, we obtain for any 𝑛 = 1, … , 𝑁𝑡

max
𝑝=1,…,𝑃

(∣𝑋𝐾,𝑛
𝑝 − 𝑋𝐾

𝑝 (𝑡𝑛)∣ + ∣𝑉 𝐾,𝑛
𝑝 − 𝑉 𝐾

𝑝 (𝑡𝑛)∣) ≤ 𝐶𝐾𝑑+𝛾+1Δ𝑡𝛾 (III-5.39)

where the constant 𝐶 does not depend on 𝐾 or Δ𝑡.

Step 2: phase-space discretization The assumptions that characteristics and their
approximations have the same initial conditions can be rewritten as 𝕏𝐾(𝑡0) = 𝒳𝐾(𝑡0)
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and 𝕍𝐾(𝑡0) = 𝒱𝐾(𝑡0). We have, for 𝑠 ∈ [𝑡0, 𝑡0 + 𝑇 ],

(
𝕏𝐾(𝑠)
𝕍𝐾(𝑠)

) = (
𝕏𝐾(𝑡0)
𝕍𝐾(𝑡0)

) + ∫
𝑠

𝑡0

(
𝕍𝐾(𝜏)

E𝐾,ℎ(𝕏𝐾(𝜏))
) 𝑑𝜏

= (
𝕏𝐾(𝑡0)
𝕍𝐾(𝑡0)

) + ∫
𝑠

𝑡0

(
𝕍𝐾(𝜏)

𝐸𝐾(𝜏, 𝕏𝐾(𝜏))
) 𝑑𝜏 + ∫

𝑠

𝑡0

(
0

(𝛿𝐸)𝐾(𝜏, 𝕏𝐾(𝜏))
) 𝑑𝜏.

Note that we also have

(
𝒳𝐾(𝑠)
𝒱𝐾(𝑠)

) = (
𝕏𝐾(𝑡0)
𝕍𝐾(𝑡0)

) + ∫
𝑠

𝑡0

(
𝒱𝐾(𝜏)

𝐸𝐾(𝜏, 𝒳𝐾(𝜏))
) 𝑑𝜏,

so that

(
𝕏𝐾(𝑠)
𝕍𝐾(𝑠)

) = (
𝒳𝐾(𝑠)
𝒱𝐾(𝑠)

)+∫
𝑠

𝑡0

(
𝕍𝐾(𝜏) − 𝒱𝐾(𝜏)

𝐸𝐾(𝕏𝐾(𝜏)) − 𝐸𝐾(𝒳𝐾(𝜏))
) 𝑑𝜏+∫

𝑠

𝑡0

(
0

(𝛿𝐸)𝐾(𝜏, 𝕏𝐾(𝜏))
) 𝑑𝜏.

From the mean value theorem we get:

∣𝐸𝐾(𝜏, 𝕏𝐾(𝜏)) − 𝐸𝐾(𝜏, 𝒳𝐾(𝜏))∣ ≤ 𝐶
⎛⎜⎜⎜⎜
⎝

∑
𝑘∈(ℤ𝑑)∗

|𝑘|≤𝐾

|𝐶𝐾
𝑘 (𝑡)| + |𝑆𝐾

𝑘 (𝑡)|
⎞⎟⎟⎟⎟
⎠

∣𝕏𝐾(𝜏) − 𝒳𝐾(𝜏)∣ .

Using the fact that the function 𝑓0 ∈ ℋ𝑟+𝛼
𝜈+𝑗 , we can apply the same ideas as those

leading to (III-5.16), in order to obtain

|𝐶𝑘(𝑡)| ≤ 𝐶
(1 + |𝑘|)𝑟+𝛼

for some 𝐶 > 0 which does not depend on 𝑘. The same estimate holds for ∣𝑆𝐾
𝑘 (𝑡)∣. Hence

∣𝐸𝐾(𝜏, 𝕏𝐾(𝜏)) − 𝐸𝐾(𝜏, 𝒳𝐾(𝜏))∣ ≤ 𝐶 ∑
𝑘∈(ℤ𝑑)∗

|𝑘|≤𝐾

1
(1 + |𝑘|)𝑟+𝛼 ∣𝕏𝐾(𝜏) − 𝒳𝐾(𝜏)∣

≤ 𝐶 ∣𝕏𝐾(𝜏) − 𝒳𝐾(𝜏)∣ (III-5.40)

where the constant 𝐶 can be taken independent of 𝐾 because 𝑟 + 𝛼 > 𝑑 + 1. Thus, using
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(III-5.36),

∣(
𝕏𝐾(𝑠) − 𝒳𝐾(𝑠)
𝕍𝐾(𝑠) − 𝒱𝐾(𝑠)

)∣ ≤ ∫
𝑠

𝑡0

∣(
𝕍𝐾(𝜏) − 𝒱𝐾(𝜏)

𝐸𝐾(𝕏𝐾(𝜏)) − 𝐸𝐾(𝒳𝐾(𝜏))
)∣ 𝑑𝜏 + 𝑇 |ℰ(𝐾, Δ𝑥, Δ𝑣)|

≤ 𝐶 ∫
𝑠

𝑡0

∣(
𝕍𝐾(𝜏) − 𝒱𝐾(𝜏)
𝕏𝐾(𝜏) − 𝒳𝐾(𝜏)

)∣ 𝑑𝜏 + 𝑇 |ℰ(𝐾, Δ𝑥, Δ𝑣)| ,

and we conclude by using the Grönwall lemma II.1:

∣(
𝕏𝐾(𝑠) − 𝒳𝐾(𝑠)
𝕍𝐾(𝑠) − 𝒱𝐾(𝑠)

)∣ ≤ 𝐶𝑇 𝑒𝐶𝑇𝐾𝑑 (𝛿 +
2𝑑

∑
𝑖=1

Δ𝑧𝑞𝑖
𝑖 𝐾𝑞𝑖) ,

where 𝐶 is independent of 𝐾, Δ𝑧𝑖, 𝑠.

Step 3: kernel truncature error We estimate the approximation in the characteristics
that is due to the truncation error in the Fourier Kernel. For 𝑝 = 1, … , 𝑃,

𝑋𝐾(𝑡; 𝑡0, 𝑥𝑝, 𝑣𝑝) = 𝑥𝑝 + ∫
𝑡

𝑡0

𝑉 𝐾(𝜏; 𝑡0, 𝑥𝑝, 𝑣𝑝)𝑑𝜏,

𝑋(𝑡; 𝑡0, 𝑥𝑝, 𝑣𝑝) = 𝑥𝑝 + ∫
𝑡

𝑡0

𝑉 (𝜏; 𝑡0, 𝑥𝑝, 𝑣𝑝)𝑑𝜏,

𝑉 𝐾(𝑡; 𝑡0, 𝑥𝑝, 𝑣𝑝) = 𝑣𝑝 + ∫
𝑡

𝑡0

𝐸𝐾(𝜏, 𝑋𝐾(𝑡0, 𝑥𝑝, 𝑣𝑝))𝑑𝜏,

𝑉 (𝑡; 𝑡0, 𝑥𝑝, 𝑣𝑝) = 𝑣𝑝 + ∫
𝑡

𝑡0

𝐸(𝜏; 𝑋(𝜏; 𝑡0, 𝑥𝑝, 𝑣𝑝))𝑑𝜏,

so that we have

(
𝒳𝐾(𝑠)
𝒱𝐾(𝑠)

) = (
𝒳𝐾(𝑡0)
𝒱𝐾(𝑡0)

) + ∫
𝑠

𝑡0

(
𝒱𝐾(𝑠)

𝐸𝐾(𝜏, 𝒳𝐾(𝜏))
) 𝑑𝜏

= (
𝒳(𝑠)
𝒱(𝑠)

) + ∫
𝑠

𝑡0

(
𝒱𝐾(𝑠) − 𝒱(𝑠)

𝐸𝐾(𝜏, 𝒳𝐾(𝜏)) − 𝐸(𝜏, 𝒳(𝜏))
) 𝑑𝜏

= (
𝒳(𝑠)
𝒱(𝑠)

) + ∫
𝑠

𝑡0

(
𝒱𝐾(𝑠) − 𝒱(𝑠)

𝐸𝐾(𝜏, 𝒳𝐾(𝜏)) − 𝐸(𝜏, 𝒳𝐾(𝜏))
)

+ (
0

𝐸(𝜏, 𝒳𝐾(𝜏)) − 𝐸(𝜏, 𝒳(𝜏))
) 𝑑𝜏.
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Thus,

∣(
𝒳𝐾(𝑠) − 𝒳(𝑠)
𝒱𝐾(𝑠) − 𝒱(𝑠)

)∣ ≤ ∫
𝑠

𝑡0

∣(
𝒱𝐾(𝑠) − 𝒱(𝑠)

𝐸𝐾(𝜏, 𝒳𝐾(𝜏)) − 𝐸𝐾(𝜏, 𝒳(𝜏))
)∣

+ ∣(
0

𝐸𝐾(𝜏, 𝒳(𝜏)) − 𝐸(𝜏, 𝒳(𝜏))
)∣ 𝑑𝜏.

Since 𝑓0 ∈ ℋ𝑟+𝛼
𝜈+𝑗 , by Proposition III.2 we have ∣∣(𝑓 − 𝑓𝐾)(𝑡)∣∣2

ℋ𝑟
𝜈

≤ 𝐶
(1+𝐾)𝛼 , hence by

Proposition III.3 we obtain

∣(
0

𝐸𝐾(𝜏, 𝒳(𝜏)) − 𝐸(𝜏, 𝒳(𝜏))
)∣ ≤ 𝐶

(1 + 𝐾)𝛼+1
2 −𝑑

,

where 𝐶 does not depend on 𝐾. We get

∣(
𝒳𝐾(𝑠) − 𝒳(𝑠)
𝒱𝐾(𝑠) − 𝒱(𝑠)

)∣ ≤ ∫
𝑠

𝑡0

∣(
𝒱𝐾(𝑠) − 𝒱(𝑠)

𝐸𝐾(𝜏, 𝒳𝐾(𝜏)) − 𝐸𝐾(𝜏, 𝒳(𝜏))
)∣ 𝑑𝜏 + 𝐶

(1 + 𝐾)𝛼+1
2 −𝑑

For the same reasons as those leading to (III-5.40), we obtain

∣(
𝒳𝐾(𝑠) − 𝒳(𝑠)
𝒱𝐾(𝑠) − 𝒱(𝑠)

)∣ ≤ 𝐶 ∫
𝑠

𝑡0

∣(
𝒱𝐾(𝑠) − 𝒱(𝑠)
𝒳𝐾(𝜏) − 𝒳(𝜏)

)∣ 𝑑𝜏 + 𝐶𝑇
(1 + 𝐾)𝛼+1

2 −𝑑
.

Finally, the Grönwall lemma yields

∣(
𝒳𝐾(𝑠) − 𝒳(𝑠)
𝒱𝐾(𝑠) − 𝒱(𝑠)

)∣ ≤ 𝐶𝑇 𝑒𝐶𝑇

(1 + 𝐾)𝛼+1
2 −𝑑

which completes the proof.
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Conclusion
Part III

6 C
H

A
P

T
E

R

In this Part of the manuscript we have studied a particle method that can be used
to simulate the solution to the Vlasov-Poisson system. It was first described in [13], but
unfortunately no detailed analysis of the method had been given. Moreover, they only
considered the Vlasov-HMF 1 system. We presented an extension of their ideas to the
Vlasov-Poisson system.

The numerical scheme can be understood as a semi-Lagrangian scheme where, instead
of going back one timestep and perform the interpolation, we go back to the initial time of
the simulation. Since we know the function at initial time, no interpolation is needed. It
is, in some sense, related to the Vortex methods used to simulate numerically the solution
to 2D-Euler equations.

The purpose of the paper [105], from which this Part of the manuscript is based on,
was first to fully describe the method, and then to give a detailed analysis. By using the
fact that the scheme can be decomposed into elementary, well-known components (namely
numerical quadrature, discrete Fourier transform and time integration), we were able to
obtain an error bound for the method that writes as a sum of the error bounds associated
to each component of the method.

The method is applied to standard one-dimensional numerical examples (i.e. 1𝑥−1𝑣),
and compared to a semi-Lagrangian scheme. It is shown that the results are very satisfying
for short times. For long times, the solution is less satisfying, and we explain this by the
presence of vortices in the solution. Indeed, the method can intuitively be understood as
“moving” the quadrature points along the flow of the equation, and if vortices are created
then for long times all the quadrature points lie in the vortices. Thus, the vortices are
well represented numerically by having many quadrature points, but the region of the
computational domain outside the vortices is very poorly accounted for.

The numerical method presents other issues. The main one is probably the computa-
tional complexity, which makes it hardly applicable for higher dimensions. This is partly
due to the use of a numerical grid, because the number of points grows exponentially with
respect to the dimension. One other issue is the dependance of the error on the number 𝐾
of Fourier modes used. Indeed, the error bound we use involves an increasing function of

1. Hamiltonian Mean-Field
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𝐾 as well as a decreasing function. Hence, it should be doable to find an optimal choice of
𝐾. This optimal choice would depend on the number of points used in the grid. However,
if the solution has huge variations, we need 𝐾 large, which means that the number of grid
points must be large as well, and thus computationally expensive.

The issues mentioned are mainly related to the fact that a grid is used for the whole
phase-space. Part of the solution to circumvent them would be to use Monte-Carlo inte-
gration (and thus a random quadrature grid), but the error bound would likely be harder
to obtain, and involve probabilities as well as some different notions of convergence.
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Erwin Schrödinger
(1887–1961). Credit
to wikipedia.org.

The XVIIth century saw a great deal of scientific advances and
discoveries. But there were also quite a few misunderstandings of
nature, and the wave-particle duality is one of them. At first, Isaac
Newton thought that light was made of particles, but an opposite
idea quickly surfaced: Christiaan Huygens imagined that light was
made only of waves. A few years later in 1801, Thomas Young’s
interference experiments helped validate the wave model proposed
by Huygens. Fast forward one century, Max Planck derived a model
for which energy could only change by a minimal increment, just
like if particles were emitted. This gave again some momentum to
the “particle” understanding of light, but the two interpretations
of light were still opposite to each other.

In 1925, Louis De Broglie wrote his doctoral thesis Recherche
sur la théorie des quanta, and proposed that particles are bundles
of waves which move with a group velocity, and which possess an effective mass 1.

In 1926, the physicist Erwin Schrödinger wrote the fundamental article [72]. In this
work, he starts from ideas developed by Louis De Broglie one year earlier, who considered
atoms and electrons as material points, and generalizes it. Schrödinger’s work is the first
account of what is now called the time-independent Schrödinger equation, which was
written at that time

Δ𝜓 + 8𝜋2𝑚(𝐸 − 𝑉 )𝜓/ℎ2 = 0, (IV-1.1)

where Δ is the Laplacian operator, 𝜓 is the wave function, 𝐸 − 𝑉 is the kinetic energy,
and ℎ ≈ 6.6261 ⋅ 10−34 Joule ⋅ Hz−1 is Planck’s constant.

In order to see how his equation was able to solve physical problems, Schrödinger
adapted equation (IV-1.1) to a simplified model of the hydrogen atom. The wave function
for this model now has to satisfy the following equation:

Δ𝜓 + 8𝜋2𝑚(𝐸 + 𝑒2/𝑟)𝜓/ℎ2 = 0, (IV-1.2)

1. The effective mass of an object is the mass it seems to have when responding to forces or interacting
with other identical objects.
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where 𝑒 is the electronic charge, and 𝑟 = (𝑥2 + 𝑦2 + 𝑧2)1/2. Owing to the fact that the
Laplace operator Δ is diagonal in the Fourier space, one can study the values of the
energy 𝐸 which give existence of a solution, and for which the solution is finite and single-
valued on the whole space ℝ3. By doing so, Schrödinger got the following set of admissible
𝐸-values:

— 𝐸 > 0
— 𝐸 = −2𝜋2𝑚𝑒4/(ℎ2𝑛2), 𝑛 = 1, 2, ….

The first condition corresponds to “hyperbolic orbits” in ordinary mechanics, and Schrödinger
argues that they are generally not interesting in quantum theory. Thus, the only interest-
ing 𝐸-values for which (IV-1.2) has an unique, finite and singe-valued solution are discrete
energy values. Moreover, these energy values correspond exactly to Bohr’s stationary en-
ergy levels.

This explanation of the discrete energy levels convinced many physicists, and the
interest for the Schrödinger equation grew over the following decades to be now of utter
importance, for physicists, chemists, and mathematicians.

It is now generally accepted that the Schrödinger equation can explain electronic
dynamics, and by understanding this equation better one can understand our world better.
As simple as it is.

In 1926, Max Born gave a statistical interpretation of quantum mechanics: the square
modulus of the wave function |𝜓(𝑡, ⋅)|2 can be understood as a probability density for the
position of a particle. See [16], or [67] for an English translation.

The rest of this chapter is a presentation of the modern-day Schrödinger equation,
heavily based on [55, Chapter I]. The time-dependent Schrödinger equation writes

𝑖ℏ𝜕𝜓
𝜕𝑡

= 𝐻𝜓, (IV-1.3)

where 𝑖2 = −1, and 𝐻 = 𝑇 + 𝑉 is the Hamiltonian operator depending on a kinetic
operator 𝑇 and a potential 𝑉. The quantity ℏ = ℎ

2𝜋 is the reduced Planck’s constant, and
its value in the standard international system of units is ℏ ≈ 1.0546 ⋅ 10−34 Joule ⋅ Hz−1.
The kinetic operator is usually defined as

𝑇 𝜓 = − ℏ2

2𝑚
Δ𝜓,

where 𝑚 is the mass of the particle considered and where Δ = ∑𝑑
𝑗=1

𝜕2

𝜕𝑥2
𝑗

is the usual
Laplace operator, while the potential simply is a multiplication operator:

(𝑉 𝜓)(𝑥) = 𝑉 (𝑥)𝜓(𝑥).
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We supply this equation with the initial condition at time 𝑡 = 0:

𝜓(𝑡 = 0, ⋅) = 𝜓0,

for some function 𝜓0, called the initial condition.
The above description holds for one particle, but since 𝐻 is linear, one can construct a

multi-particle Hamiltonian operator as the sum of each individual Hamiltonian operator.
Each individual Hamiltonian operator has a potential 𝑉 which can be understood as an
external force. When several particles are considered, the potential part of the multi-
particle Hamiltonian operator can also take into account interactions between particles.
The Schrödinger equation in the 𝑁-particle case is then

𝑖ℏ𝜕𝑡𝜓(𝑡, 𝑥) = − ℏ2

2𝑚
Δ𝑥𝜓(𝑡, 𝑥) + 𝑉 (𝑡, 𝑥, 𝜓)𝜓(𝑡, 𝑥),

𝜓(𝑡 = 0, ⋅) = 𝜓0,
(IV-1.4)

where 𝑥 = (𝑥1, … , 𝑥𝑁) ∈ ℝ𝑁𝑑 and 𝑡 ≥ 0. The variable 𝑥𝑗 = (𝑥𝑗
1, … , 𝑥𝑗

𝑑) ∈ ℝ𝑑 is the
position variable of the 𝑗-th particle.

If the potential is real-valued and depends only on the space variable 𝑥 ∈ ℝ𝑁𝑑, it is
said to be confining if 𝑉 (𝑥) → +∞ when |𝑥| → +∞. Not all potentials yield an unique
solution to the Schrödinger equation (IV-1.4).

When considering the many-particle Hamiltonian, it is often to model electron and
nuclei motions in atoms or molecules. If we denote by 𝑚 the electrons’ mass and by 𝑀
the nuclei mass, we have

0 < 𝑚
𝑀

∶= 𝜀2 ≪ 1.

Using physical considerations, it can be argued that motion of the nuclei over a distance
∼ 1 can be expected on a time scale ∼ 𝜀−1. The time is then rescaled to 𝑡 → 𝑡/𝜀, so that
the Schrödinger equation then takes the form

𝑖𝜀𝜕𝜓
𝜕𝑡

= −𝜀2

2
Δ𝜓 + 𝑉 𝜓. (IV-1.5)

This is called the semi-classical scaling of the Schrödinger equation.
Other important applications of the Schrödinger equation include laser beam propa-

gation and quantum optics [77, 62, 33]. In this case, the nonlinear Schrödinger equation
writes

𝑖𝜕𝑡𝜓 + Δ𝜓 + |𝜓|2𝜓 = 0.

The nonlinear Schrödinger equation also appears in plasma physics [64] or fiber optics [2].
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We begin with Chapter IV-2 – Review of the Schrödinger equation, which is a quick
overview of the literature treating the Schrödinger equation. After giving some properties
and facts from the theoretical point of view, we review four main families of numerical
schemes that are – or have been – used to approximate the solution to the Schrödinger
equation. We will see that all but one have limitations that prevent them from being used
in real life situations. The promising family of schemes consists in Variational methods.
However, nowadays they are only used in the linear framework. Thus, there is room
for works which focus on nonlinear equations but retain the advantages of variational
methods.

Before presenting the main content of the current Part, we will see in Chapter IV-3 –
Modulation of solutions as a theoretical tool the additional ideas that we use compared to
those of the usual variational methods. We are motivated by some very recent theoretical
works to look for solutions to the Schrödinger equation under some specific form. The
idea is to have a function which depends on a small number of parameters, and the time
evolution of these parameters is chosen appropriately so that the parametrized function
is solution to the Schrödinger equation. This is what we call modulation. We will see how
the exact dynamics of the linear Schrödinger equation with quadratic potential can be
recovered exactly with a very small number of parameters. Then comes the main dish:
Chapter IV-4 – Nonlinear Schrödinger equation, which deals with the cubic nonlinear
Schrödinger equation. We can no longer recover the exact dynamics of the solution using
a small number of parameters because of the cubic interactions in the equation, but it is
possible to obtain numerically an approximate solution. We use a variational approach for
this, and it seems to be the first account of a variational approach used in the nonlinear
case. The variational method is the Dirac-Frenkel principle. The proposed method is
then studied on some numerical examples against a grid-based spectral method, and it is
observed that the Dirac-Frenkel principle suffers from the same issues than in the linear
setting.

Finally, this Part ends with Chapter IV-5 which is a discussion on the limitations of
the proposed method, as well as perspectives and ways to improve it.

The novel content of this Part of the manuscript is heavily based on some yet un-
published work [30], which is a joint work between Erwan Faou, Pierre Raphaël, and the
author of the present manuscript.
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In this Chapter we will review some basic facts and results about the time-dependent
Schrödinger equation (IV-1.4). Equation (IV-1.4) with total dimension 𝑁𝑑 was a “phys-
ical” equation, we now consider a “mathematical” version: 𝑥 ∈ ℝ𝑑, and set the physical
constants ℏ, 𝑚 respectively to 1 and 1/2. The equation at hand is now:

𝑖𝜕𝑡𝜓(𝑡, 𝑥) = (−Δ𝑥 + 𝑉 (𝑡, 𝑥, 𝜓)) 𝜓(𝑡, 𝑥) = 𝐻(𝑡, 𝑥, 𝜓)𝜓(𝑡, 𝑥), 𝑥 ∈ ℝ𝑑, 𝑡 ≥ 0,

𝜓(𝑡 = 0, ⋅) = 𝜓0.
(IV-2.1)

We recall that Δ𝑥 = ∑𝑑
𝑗=1

𝜕2

𝜕𝑥2
𝑖

is the usual Laplacian with respect to variable 𝑥, and
𝐻(𝑡, 𝑥, 𝜓) ∶= −Δ𝑥 + 𝑉 (𝑡, 𝑥, 𝜓) is called the Hamiltonian operator. We may use the nota-
tion 𝜓(𝑡)(𝑥) = 𝜓(𝑡, 𝑥), and 𝜓(𝑡) = 𝜓(𝑡, ⋅).

IV-2.1 Some results about the Schrödinger equation

As usual when studying partial differential equations, the first things to ask are: is
there a solution to (IV-2.1)? If the answer is “yes”, is it unique? How does the solution
depend on the initial condition 𝜓0? Does the existence and/or uniqueness of the solution
depend on the initial condition 𝜓0? Does the solution exist for all times 𝑡 ≥ 0, or is there
a bound 𝑇 > 0 such that the solution exists only for times 0 ≤ 𝑡 < 𝑇?

IV-2.1.1 Existence, uniqueness, …

Potential 𝑉 = 0

In the absence of potential, i.e. 𝑉 = 0, it can be shown that a solution exists for all
𝜓0 ∈ 𝕃2(ℝ𝑑). This can be done for instance as explained in [20] or [55]: solve the equation
for initial condition 𝜓0 ∈ 𝒮 using the Fourier transform, where 𝒮 is the Schwartz space.
The solution is unique and well-defined for all times 𝑡 ≥ 0. Then, use the fact that the
Schwartz space is dense in 𝕃2(ℝ𝑑) so that the solution can be defined by density for
𝜓0 ∈ 𝕃2(ℝ𝑑).
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Potential 𝑉 = 𝑉 (𝑥)

When a nonzero potential 𝑉 = 𝑉 (𝑥) is considered, the existence and uniqueness of
a solution to (IV-2.1) generally relies on the self-adjointness of the Hamiltonian operator
𝐻.

Definition IV.1

Let ℋ a complex Hilbert space with inner product (⋅, ⋅), taken antilinear in its first
argument and linear in its second one. A linear operator 𝐻 ∶ 𝐷(𝐻) → ℋ, defined on
a domain 𝐷(𝐻) dense in ℋ, is called symmetric if

(𝐻𝜓, 𝜑) = (𝜓, 𝐻𝜑) , ∀𝜓, 𝜑 ∈ 𝐷(𝐻).

The operator 𝐻 is self-adjoint if for any 𝜑, 𝜂 ∈ ℋ, the relation

(𝐻𝜓, 𝜑) = (𝜓, 𝜂) , ∀𝜓 ∈ 𝐷(𝐻) implies 𝜑 ∈ 𝐷(𝐻) and 𝜂 = 𝐻𝜑.

In order to show the existence of a solution to (IV-2.1), one can use the following
theorem (see for instance [38, Theorem 2.16]):

Theorem IV.1

If 𝐻 is a self-adjoint operator, then there is a unique family of bounded operators,
𝑈(𝑡) ∶= 𝑒−𝑖𝑡𝐻, having the following properties for 𝑡, 𝑠 ∈ ℝ:

𝑖 𝜕
𝜕𝑡

𝑈(𝑡) = 𝐻𝑈(𝑡) = 𝑈(𝑡)𝐻, (IV-2.2)

𝑈(0) = 1, (IV-2.3)

𝑈(𝑡)𝑈(𝑠) = 𝑈(𝑡 + 𝑠), (IV-2.4)

‖𝑈(𝑡)𝜓‖ = ‖𝜓‖. (IV-2.5)

If the potential 𝑉 is such that Theorem IV.1 can be applied (i.e. −Δ+𝑉 is a self-adjoint
operator), then the unique solution to (IV-2.1) is given by

𝜓(𝑡) = 𝑈(𝑡)𝜓0.

The question is now: when can Theorem IV.1 be applied? Among the different possible
criteria, there is one rather simple, called the Kato-Rellich theorem (see [46, Section V.4.1,
Theorem 4.3], or [38, Theorem 2.9]):
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Theorem IV.2

Let 𝑇 be a self-adjoint operator on a Hilbert space, and 𝑉 a symmetric operator
bounded by

‖𝑉 𝜓‖ ≤ 𝑎‖𝜓‖ + 𝑏‖𝑇 𝜓‖

for all 𝜓 ∈ 𝐷(𝑇 ), with 0 < 𝑏 < 1. Then, 𝐻 = 𝑇 + 𝑉 is self-adjoint with domain
𝐷(𝐻) = 𝐷(𝑇 ).

Potential 𝑉 = 𝑉 (𝑥, 𝜓)

The results and properties given in this section are based on [20] and [18].

When the potential depends on the wave function 𝜓, the PDE (IV-2.1) is not linear
anymore. It is then called a nonlinear PDE. Generally, properties like existence or unique-
ness are harder to prove in the nonlinear case, and we can expect that interactions (or
nonlinearities) will be the source of many issues (theoretical as well as numerical, as we
will see in the next section).

The nonlinearity can be either local or nonlocal. A global or nonlocal nonlinearity
means that the value of 𝜓 over the whole domain ℝ𝑑 is required to compute the nonlin-
earity at each point 𝑥 ∈ ℝ𝑑. Such examples are the Schrödinger-Poisson system:

𝑖𝜕𝑡𝜓 = −Δ𝜓 + 𝑉 (𝑥)𝜓 + 𝑉𝑝𝜓, Δ𝑉𝑝 = 𝜆 (|𝜓|2 − 𝑐)

for some appropriate constants 𝜆, 𝑐, or the Hartree equation:

𝑖𝜕𝑡𝜓 = −Δ𝜓 + 𝑉 (𝑥)𝜓 + 𝜆 ( 1
|𝑥|𝛾

∗ |𝜓|2) 𝜓,

with some exponent 𝛾. A local nonlinearity only involves the value 𝜓(𝑥) in order to
compute the nonlinearity at 𝑥 ∈ ℝ𝑑. It can for instance be polynomial:

𝑖𝜕𝑡𝜓 = −Δ𝜓 + 𝑉 (𝑥)𝜓 + |𝜓|2𝜎𝜓,

for some 𝜎 > 0, or logarithmic:

𝑖𝜕𝑡𝜓 = −Δ𝜓 + 𝑉 (𝑥)𝜓 + log(|𝜓|2)𝜓.

See [18] for a recent and unified presentation of results about the Schrödinger equation
with local nonlinearities.
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We will focus later on the cubic nonlinear Schrödinger equation with quadratic poten-
tial, thus we give now some precise statements concerning the following problem:

{
𝑖𝜕𝑡𝑢 + (Δ − |𝑥|2)𝑢 = |𝑢|2𝑢,

𝑢(0) = 𝜑.
(IV-2.6)

But first, some notations and vocabulary. Consider a real-valued potential 𝑈 ∈ 𝐶∞(ℝ𝑑),
such that 𝑈 ≥ 0 and

𝐷𝛼𝑈 ∈ 𝕃∞(ℝ𝑑), for all 𝛼 ∈ ℕ𝑑 such that |𝛼| > 2,

where 𝐷𝛼 ∶= 𝜕𝛼1

𝜕𝑥𝛼1
1

⋯ 𝜕𝛼𝑑

𝜕𝑥𝛼𝑑
𝑑

. We define the operator 𝐴 on 𝕃2(ℝ𝑑) by

{
𝐷(𝐴) = {𝑢 ∈ 𝐻1(ℝ𝑑) ∶ 𝑈|𝑢|2 ∈ 𝕃1(ℝ𝑑) and Δ𝑢 − 𝑈𝑢 ∈ 𝕃2(ℝ𝑑)} ,

𝐴𝑢 = Δ𝑢 − 𝑈𝑢 for 𝑢 ∈ 𝐷(𝐴).

It can be shown that 𝐴 is a self-adjoint and negative operator, see for instance [20,
Lemma 9.2.1]. The total energy 𝐸 is defined as

𝐸(𝑢) = 1
2

∫
ℝ𝑑

(|∇𝑢|2 + 𝑈|𝑢|2 − 1
2

|𝑢|4) 𝑑𝑥.

Also define
𝑋𝐴 ∶= {𝑢 ∈ 𝐻1(ℝ𝑑) ∶ 𝑈|𝑢|2 ∈ 𝕃1(ℝ𝑑)} ,

and the associated norm:

‖𝑢‖2
𝑋𝐴

= ‖∇𝑢‖2
𝕃2 + ‖𝑢‖2

𝕃2 + ∫
ℝ𝑑

𝑈|𝑢(𝑥)|2𝑑𝑥.

We denote by 𝑋∗
𝐴 the dual of the space 𝑋𝐴.

For initial datum 𝜑 ∈ 𝑋𝐴, we have the following result (it can be found for instance
in [20, Theorem 9.2.6]):

Theorem IV.3

The following properties hold:
— For every 𝜑 in 𝑋𝐴, there exist 𝑇min(𝜑), 𝑇max(𝜑) > 0 and a unique, maximal

solution 𝑢 ∈ 𝐶((−𝑇min, 𝑇max), 𝑋𝐴) ∩ 𝐶1((−𝑇min, 𝑇max), 𝑋∗
𝐴) of (IV-2.6). The

solution 𝑢 is maximal in the sense that if 𝑇max < ∞ (resp. 𝑇min < ∞), then
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IV-2.1. Some results about the Schrödinger equation

‖𝑢(𝑡)‖𝐴 → ∞ as 𝑡 → 𝑇max (resp. as 𝑡 → 𝑇min).
— There is conservation of charge and energy, that is

‖𝑢(𝑡)‖𝕃2 = ‖𝜑‖𝕃2 and 𝐸(𝑢(𝑡)) = 𝐸(𝜑) for all 𝑡 ∈ (−𝑇min, 𝑇max).

— There is continuous dependence of the solution on the initial value in the sense
that both function 𝑇min(𝜑) and 𝑇max(𝜑) are lower semicontinuous, and that
if 𝜑𝑚 → 𝜑 in 𝑋𝐴 and if [−𝑇1, 𝑇2] ⊂ (−𝑇min(𝜑), 𝑇max(𝜑)), then 𝑢𝑚 → 𝑢 in
𝐶([−𝑇1, 𝑇2], 𝑋𝐴), where 𝑢𝑚 is the maximal solution of (IV-2.6) with initial
value 𝜑𝑚.

— If 𝜑 ∈ 𝐷(𝐴), then 𝑢 ∈ 𝐶((−𝑇min, 𝑇max), 𝐷(𝐴)) ∩ 𝐶1((−𝑇min, 𝑇max), 𝕃2(ℝ𝑑)).

In the following, the initial condition 𝜑 will be assumed smooth enough, so that the
above existence result is enough for our purposes.

IV-2.1.2 Imaginary time method

The Schrödinger equation can be shown to be related to diffusive equations. This
can be seen either by separating the real and imaginary parts (as in done for instance
in [84]), or by using the so-called Imaginary time method (see for instance [4, 23]). This
latter transformation is sometimes called Wick rotational transformation from real time
to imaginary time, due to Wick who first used this idea in [85].

“
”G. C. Wick (1954)

While the concept of an imaginary relative time variable does not
help physical intuition, it has mathematically several advantages.

Some properties of the Schrödinger equation can then be deduced from the corre-
sponding diffusive equations. The Wick rotational tranform from real time to imaginary
time is simply obtained by letting 𝜏 ∶= 𝑖𝑡, replacing 𝑡 by −𝑖𝜏 in (IV-2.1), and then looking
at 𝜏 just like if it was a real variable. We get

𝜕
𝜕𝜏

𝜓(𝜏, 𝑥) = Δ𝜓(𝑡, 𝑥) − 𝑉 (𝑥)𝜓(𝑡, 𝑥). (IV-2.7)

The variable 𝜏 is supposedly an imaginary number, but once we have (IV-2.7) we can
study the equation by considering 𝜏 ∈ ℝ. In particular, knowing the functions {𝜑𝑛}𝑛≥0,
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Part IV, Chapter IV-2 – Review of the Schrödinger equation

eigenfunctions of 𝐻 = −Δ + 𝑉, is enough to solve the Schrödinger equation. This opens
some perspectives from the theoretical point of view, as well as from the numerical point
of view. One of the main uses of this method is the Normalized Gradient method, but it
has also been used in other various contexts, see for instance [82].

Normalized Gradient method

Suppose that the potential 𝑉 is real-valued, depends only on space 𝑥, is such that
𝐻 = −Δ + 𝑉 is self-adjoint, and such that 𝑉 (𝑥) → ∞ as |𝑥| → ∞. It can be shown
that there exists an orthonormal basis {𝜑𝑛}𝑛∈ℕ of eigenfunctions of the operator 𝐻, each
𝜑𝑛 being associated to an eigenvalue 𝜆𝑛. Moreover, the eigenvalues are real and can be
ordered so that 𝜆0 ≤ 𝜆1 ≤ …. Therefore, we can decompose 𝜓 solution to (IV-2.7) into
this basis:

𝜓(𝜏, 𝑥) =
∞

∑
𝑛=0

𝑐𝑛(𝜏)𝜑𝑛(𝑥),

where the expansion coefficients at time 𝜏 = 0 are given by 𝑐𝑛(0) = (𝜓0, 𝜑𝑛)𝕃2(ℝ𝑑).
Plugging this ansatz into (IV-2.7), we obtain

𝑐′
𝑛(𝜏) = −𝜆𝑛𝑐𝑛(𝜏) ⟹ 𝑐𝑛(𝜏) = 𝑐𝑛(0)𝑒−𝜆𝑛𝜏,

and thus
𝜓(𝜏, 𝑥) =

∞
∑
𝑛=0

𝑐𝑛(0)𝜑𝑛(𝑥)𝑒−𝜆𝑛𝜏. (IV-2.8)

As 𝜏 → ∞, all contributions in the sum become negligible except for the lowest integer
𝑛 such that 𝑐𝑛(0) ≠ 0. For simplicity, assume 𝑐0(0) ≠ 0. Then

𝜓(𝜏, 𝑥) ∼𝑡→∞ 𝑐0(0)𝜑(𝑥)𝑒−𝜆0𝜏. (IV-2.9)

This means that, after a long-time, the space behavior of 𝜓 is governed by the first
eigenfunction of the operator 𝐻. In order to obtain the eigenfunction associated to the next
eigenvalue 𝜆1, it suffices to start from an initial condition 𝜓0 such that (𝜓0, 𝜑0)𝕃2(ℝ𝑑) = 0
and (𝜓0, 𝜑1)𝕃2(ℝ𝑑) ≠ 0, and so on for the next ones.

Of course, as 𝜏 → ∞, we get ‖𝜓(𝜏)‖2 → 0, so the main idea of the Normalized
Gradient method is to renormalize 𝜓 by its 𝕃2-norm at all times. In the Normalized
Gradient method (see e.g. [7]), a time sequence {𝜏𝑛}𝑛∈ℕ is considered. For each time
instant 𝜏𝑛, the following steps are done:

1. Given an approximation of the function 𝜓(𝜏𝑛−1), obtain an approximation ̃𝜓(𝜏𝑛) of
𝜓(𝜏𝑛);

2. Normalize ̃𝜓(𝜏𝑛) by its 𝕃2-norm in space;
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3. Use this normalized approximation ̃𝜓(𝜏𝑛) for the starting point of the next step.

In essence, it consists in getting rid of the multiplication by 𝑒−𝜆0𝜏 in (IV-2.9) without the
knowledge of 𝜆0. As 𝑛 → ∞, the approximation ̃𝜓(𝜏𝑛) becomes an approximation of the
ground state 𝜑 (more precisely, it becomes an approximation of 𝑐0(0)

|𝑐0(0)|𝜑 but this is 𝜑 up
to a phase shift).

Remark IV.1

The main application of the Normalized Gradient method consists in looking for eigen-
functions of 𝐻, by looking at lim𝜏→∞

𝜓(𝜏,𝑥)
‖𝜓(𝜏,𝑥)‖2

. Therefore, one has to numerically dis-
cretize time and apply successively the numerical approximation of the operator 𝐻.
Even though the methods involved are quite different, one can think of the discretized
Normalized Gradient method as some kind of power method used to obtain the eigen-
values of a matrix. Some authors have not called it a “Normalized Gradient method”
but applied the same idea, see for instance [78, 76].

The fact that the long-time space behavior of 𝜓 is governed only by the first eigenmode
of the operator 𝐻 has lead some authors to derive the Normalized Gradient method by
writing

𝜓(𝑡, 𝑥) = 𝑒−𝑖𝜇𝑡𝜑(𝑥),

with 𝜇 and 𝜑 to be determined, and then to plug this into (IV-2.1).
Note that the above ideas also work in the nonlinear case, i.e. if the potential depends

on the solution as well. The imaginary time method is for instance used in [7, 29] as the
core idea of a generalized version of the Normalized Gradient method: the nonlinear cubic
Schrödinger equation

𝑖𝜕𝑡𝜓 + Δ𝜓 − |𝑥|2𝜓 = |𝜓|2𝜓 (IV-2.10)

is used as means to obtain the ground states that minimize the energy functional defined
by

𝐸(𝜙) ∶= ∫
ℝ𝑑

(1
2

|∇𝜙|2 − 1
2

|𝑥|2|𝜙|2 + 1
4

|𝜙|4) .

These ground states are called solitons. In other words, the solitons solution to

Δ𝑄 − |𝑥|2𝑄 − |𝑄|2𝑄 = 𝜆𝑄,

are obtained by looking at the Wick transform of (IV-2.10). The pair (𝜆, 𝑄) is an eigenpair
of the nonlinear operator appearing on the left-hand side.

We have mentioned in this section that the operator 𝐻 = −Δ + 𝑉 needed to be
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discretized at some point. This holds for the Normalized Gradient method, but in general
if one is not interested in the ground states of the Schrödinger equation but in the time
evolution of the solution 𝜓(𝑡, 𝑥), then the time domain has to be discretized as well as
the space domain. This is easier said than done. There are several challenges one will face
when discretizing (IV-2.1):

— the high dimensionality of the space domain;
— the fast oscillations in the solutions;
— the different scales occuring in the equation: (IV-1.3) is used as a model for the

motion of electrons and nuclei in atoms or molecules, but the mass of electrons is
much smaller than that of nuclei particles. A satisfying numerical scheme has to
take this discrepancy into account.

IV-2.2 Numerical schemes

When trying to obtain an approximate numerical solution to a PDE, the first and
easiest scheme generally consists in using finite differences. We explained in Section IV-
1 – Introduction that, in most physical situations, the dimension of the space variable
𝑥 is 3𝑁 with 𝑁 the number of particles considered. A finite-difference scheme needs to
discretize the 3𝑁-dimensional phase space, which is already a computational challenge in
itself. Furthermore, the grid has to be relatively fine so that the results are meaningful.
Hence, there is no way one can simulate physical scenarii using finite differences. This is
summed up in [55]:

“
”C. Lubich (2008)

Computations with direct finite-difference discretizations of
Schrödinger’s equation are out of reach for more than two or three
particles.

We note that, even for simple molecules like the one of carbon dioxyde CO2, the
dimension is much too large to even fit a grid onto any computer. For CO2, there are
three nuclei and twenty-two electrons, which yields twenty-five particles and thus a space
variable 𝑥 ∈ ℝ75.

The huge space dimensionality then rules out any grid-based method for simulating
the “physical” equation. However, the mathematical version (IV-2.1) of the Schrödinger
equation may be simpler to study since it can be formulated in a 𝑑-dimensional setting
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with 𝑑 possibly small. This (simpler) mathematical version can be justified as a way to
gain insight into the physics happening in real situations.

Remark IV.2

From now on, we consider the mathematical and low-dimensional version of the
Schrödinger equations, with dimension 𝑑 ≥ 1. If we need to refer to the “physical”
Schrödinger equations, we will state it explicitly.

The question is now: are grid-based methods an interesting approach to simulating
the Schrödinger equations? And the next question is: if grid-based methods are not ap-
propriate, what better options are available?

IV-2.2.1 FDTD

In [78], a Finite-Difference Time-Domain (FDTD) method is applied to the Schrödinger
equation. It consists in discretizing both the time and space domains using finite-differences,
and was already largely used in electromagnetic simulations but not yet used in the con-
text of the Schrödinger equation. It focuses on the Schrödinger operator 𝑖𝜕𝑡 + Δ − 𝑉,
which is discretized using finite-differences in the (𝑡, 𝑥) domain. The method is a two-
step process: the first step obtains the eigenvalues of the operator, while the second step
obtains the eigenvectors by using the eigenvalues obtained during the first step.

It may be useful now to have in mind the computations we did in Section IV-2.1.2 –
Imaginary time method, and specifically equation (IV-2.8). During the first step of the
FDTD method, an observation point 𝑥𝑜𝑏𝑠 in the space domain is picked, and the initial
condition is chosen to be a very localized function around 𝑥𝑜𝑏𝑠. By having an initial condi-
tion very localized, we know that it involves many eigenfunctions of the operator 𝐻. Then
equation (IV-2.1) is simulated over a long time using finite differences in time and space,
and once enough iterations are done the simulation is stopped. Denote 𝑁𝑓𝑖𝑛𝑎𝑙 the total
number of iterations in time. In particular, we have a sequence ( ̃𝜓(𝑡𝑛, 𝑥𝑜𝑏𝑠))

𝑛=0,…,𝑁𝑓𝑖𝑛𝑎𝑙

which corresponds to approximate values of the solution 𝜓 to the Schrödinger equation,
evaluated at the observation point 𝑥𝑜𝑏𝑠 and for all instants 𝑡𝑛 of the numerical simula-
tion. By performing a (discrete) Fourier transform of this sequence, we can determine
the first eigenvalues of 𝐻: indeed, equation (IV-2.8) indicates that 𝜓(𝑡, 𝑥𝑜𝑏𝑠) simply is
a weighted sum of complex exponentials, each one having a phase corresponding to an
eigenvalue of 𝐻. The second step of the FDTD procedure consists in obtaining the eigen-
functions from the eigenvalues, and [78] gives a way to do so. Their numerical examples
are two-dimensional, and they use finite-differences of order one in time and two in space.
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Another way of using the FDTD decomposition consists in first transforming the
Schrödinger equation into a diffusion equation by using the imaginary time method, and
then applying the FDTD method to the diffusion equation. This idea is for instance used in
[76]. The resulting algorithm is based on the expression (IV-2.8), but since the amplitude
of the function decreases with time, it is necessary to renormalize the solution at each
timestep.

Some other examples of the use of finite differences applied to the Schrödinger equation
can be found in [74, 22, 71, 70, 87, 63, 25].

IV-2.2.2 Grid-based spectral methods

One issue of finite difference methods is that they are usually not very accurate. Most
of the works mentioned in the previous section used a discretization of order 2 in space,
and order 1 or 2 in time. Thus, in order to obtain satisfying results, the grid needs to be
fine. An alternative option consists in using spectral approximations, which can be much
more accurate.

One of the first such schemes used in the context of the Schrödinger equation is
probably due to Feit, Fleck and Steiger [32], who used a Strang splitting in time, combined
with a Fourier transform in space in order to approximate the Laplacian operator. They
already noted that the Fast Fourier Transform 1 could be used in order to have a fast
and efficient algorithm. One year later, in [49], the FFT in space is used in combination
with a finite difference discretization in time. Leforestier et al. compare in [54] several
time-propagation schemes combined with a Fourier spectral method in space. We refer
to [56] for a convergence analysis of the Strang splitting method applied to the nonlinear
Schrödinger equation.

The grid-based spectral schemes have also been applied to the nonlinear Schrödinger
equation, see for instance [8].

Recently, grid-based methods were investigated again thanks to the discovery of an
exact splitting formula between the kinetic and potential parts. The exact splitting formula
is due to Bernier [13, 3], and a Fourier-based spectral method using the exact splitting is
presented in [14]. By separating the kinetic and potential parts, the kinetic part (−Δ) can
be solved approximately in the Fourier domain and the potential part can be computed
exactly in the space domain.

For additional numerical experiments using grid-based spectral methods, we refer the
reader to [9, 8].

1. See Section II-5.2 – Discrete Fourier transform (DFT) for more details.
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IV-2.2.3 Gridless spectral methods

Even though the grid-based spectral schemes seemed promising, the only numerical
experiments that could have been performed were at most three-dimensional. A part of
this limitation is due to the fact that a grid is used, which makes the algorithm computa-
tionally expensive. In order to avoid having to rely on a grid, which is not efficient in high
dimensions, some gridless spectral methods were devised. Contrary to every numerical
method we mentioned until now, there is need for a fine grid. The basic idea is that, for
some equations, an appropriate 𝕃2 basis exists. Once we know an appropriate basis, we
can decompose the solution to the equation in this basis, and simply look at the evolution
of the expansion coefficients in order to solve the equation.

For the sake of clarity, we explain how gridless spectral methods work with a simple
example.

Example IV.1

We consider in this example the one-dimensional linear Schrödinger equation

𝑖𝜕𝑡𝜓(𝑡, 𝑥) = −𝜓″(𝑡, 𝑥) + |𝑥|2𝜓(𝑡, 𝑥), 𝑥 ∈ ℝ. (IV-2.11)

It is a well known fact (see for instance [73, Section 7.2.1.2]) that the Hermite functions
𝐻𝑛 satisfy the following ODE:

𝐻″
𝑛(𝑥) + (2𝑛 + 1 − 𝑥2)𝐻𝑛(𝑥) = 0, 𝑛 ∈ ℕ.

Moreover, {𝐻𝑛 ∶ 𝑛 ∈ ℕ} is an orthonormal basis of 𝕃2(ℝ). Therefore, we can decom-
pose

𝜓(𝑡, 𝑥) =
∞

∑
𝑛=0

𝑐𝑛(𝑡)𝐻𝑛(𝑥).

By plugging this expression of 𝜓 into (IV-2.11), one gets

∞
∑
𝑛=0

𝑖𝑐′
𝑛(𝑡)𝐻𝑛(𝑥) =

∞
∑
𝑛=0

𝑐𝑛(𝑡)(2𝑛 + 1)𝐻𝑛(𝑥).

The orthogonality of the family {𝐻𝑛 ∶ 𝑛 ∈ ℕ} yields the following ODEs:

𝑖𝑐′
𝑛(𝑡) = (2𝑛 + 1)𝑐𝑛(𝑡) ⟺ 𝑐𝑛(𝑡) = 𝑒−𝑖(2𝑛+1)𝑡𝑐𝑛(0).

Moreover, the coefficients 𝑐𝑛(0) are known by decomposing the initial condition at
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time 𝑡 = 0 into the Hermite basis. If this decomposition at time 𝑡 = 0 is known, we
can know exactly the solution 𝜓(𝑡) for any 𝑡, and without having to use a grid!

It is quite obvious that, in Example IV.1, the Hermite basis has been chosen because
we are interested in the linear Schrödinger equation on ℝ and the Hermite functions are
eigenfunctions of the operator −Δ + |𝑥|2. If the domain in which lives the space variable
is different, the appropriate basis will also be different. For instance, in [11, 10], Bao et al.
used a Generalized-Laguerre, Fourier and Hermite combination in order to solve the cubic
nonlinear Schrödinger equation (also known as the Gross-Pitaevskii equation). In their
study, the treat the two- and three-dimensional cases. In the two-dimensional case, they
use a polar decomposition (𝑟, 𝜃) ∈ ℝ∗

+ ×(0, 2𝜋), which explains the use of the Generalized-
Laguerre basis for 𝑟 and the Fourier basis for 𝜃. In the three-dimensional case, they use a
cylindrical decomposition (𝑟, 𝜃, 𝑧) ∈ ℝ∗

+ × (0, 2𝜋) × ℝ. This explains the addition of the
Hermite basis to their two-dimensional results.

In [80], Thalhammer et al. use ideas similar to those of Bao et al. but consider only
one tensorized basis: either the Hermite basis, tensorized so that it becomes a basis of
𝕃2(ℝ𝑑), or the Fourier basis by assuming that the space ℝ𝑑 is restricted to a bounding
box [−𝑎, 𝑎]𝑑, with 𝑎 > 0 sufficiently large.

One of the main issues with the gridless spectral methods is that they are designed for
specific equations. For instance, if the potential 𝑉 is not “nice”, finding an explicit 𝕃2(ℝ𝑑)
basis of which all elements are eigenfunctions of −Δ + 𝑉 may be difficult.

Moreover, even in the cases where there exists an explicit appropriate basis, it may be
relatively expensive to use the method, depending on the initial condition. For instance,
let us go back to Example IV.1. Suppose the initial condition is a standard Gaussian
function (i.e. centered with variance 1), then only one Hermite mode is required since
𝐻0(𝑥) = 𝑒−𝑥2/2. In this case the gridless spectral method will be very efficient. On the
other hand, it the initial condition is a sum of two Gaussian functions with unit variance
and mean ±𝜇, then the number of Hermite modes in its Hermite decomposition will grow
as |𝜇| → ∞. This can be seen in Figure IV-2.1, where we plot the number of Hermite modes
needed to accurately decompose 𝜓0(𝑥) = 𝑒− (𝑥+𝜇)2

2 + 𝑒− (𝑥−𝜇)2
2 , for some values of 𝜇. The

key takeaway is that, for this example, the gridless spectral method will be efficient and
cheap for initial conditions localized near the origin. The computational cost will increase
when the initial condition is not close to the origin, because many more modes will be
nonzero. Hence, the gridless spectral methods are adapted to certain special equations,
and when they are easily applicable they can be very efficient.
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Figure IV-2.1 – Approximate Hermite coefficients of 𝜓0(𝑥) = 𝑒− (𝑥+𝜇)2
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As we just explained, there may be situations were an appropriate basis really makes
the algorithm gridless. If it happens, it generally is for linear equations. This was the
case for instance of the linear Schrödinger equation. It gets a little trickier for nonlinear
equations, and in this case we may need a grid the handle the nonlinear interactions. This
is for example the case of [11, 80, 10], where the authors are interested in (IV-2.6) and
resort to a collocation grid in order to simulate the time-evolution of the nonlinear part.
A collocation grid may be smarter and cheaper than a uniform grid, but it still suffers for
the well-known “curse of dimensionality”…

IV-2.2.4 Variational Gaussian wavepackets

An alternative method to the previously mentioned ones, introduced early and which
is still widely used today, is the time-dependent variational approach proposed by Heller
[43, 42]. For this method, Heller started by discretizing the solution as a sum of Gaus-
sian functions, the so-called Gaussian wavepackets. The Gaussian functions possess many
favorable properties, and one of them is the following: assume that 𝑉 (𝑡, 𝑥, 𝜓) = 𝑉 (𝑥) is
quadratic in (IV-2.1), if the initial condition 𝜓0 is a Gaussian function, then the solution
will remain Gaussian. The main component of this method is to let the Gaussian have
time-dependent mean, moment, and width matrix.

In order to know the time-evolution of these Gaussian parameters, the Dirac-Frenkel
variational principle is used. We note that recently, an alternative has been proposed, see
[50]. We will use again later the Dirac-Frenkel principle, so it is essential to give some
details about it. We postpone this detailed presentation to the end of the section.
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When the potential is not quadratic, Heller proposed using a locally quadratic approx-
imation of the potential around each wavepacket and he argues that, since the Gaussian
functions are localized, the quadratic approximation of 𝑉 is enough to recover accurately
the dynamics of the wavepackets.

Remark IV.3

Even though the version by Heller is by far the most popular today, an early version
of the variational wavepackets is due to Lebedeff [53], who only allowed a linear phase,
and a single wavepacket. The work of Heller improves it by allowing a quadratic phase
and several wavepackets.

Nowadays the variational Gaussian wavepackets are widely used, and this can be seen
by the huge number of different methods based on the initial one by Heller, which is
nowadays called the Thawed Gaussian approximation. As we explained previously, the
Thawed Gaussian approximation works by letting the Gaussian’s mean, momentum and
width matrix be time-dependent. In contrast, the Frozen Gaussian approximation has
been developed [41]. It consists in having Gaussian wavepackets for which the width
matrix is fixed, and only the mean, momentum and complex phase are time-dependent.

“
”Eric Heller (1981)

[…] the source of the term “Frozen Gaussian”: the Gaussian packet
moves along with its classical trajectory without changing shape.
Like a rigid snowball in flight, the frozen Gaussian moves with the
average position and momentum.

These two schemes have some remarkable properties: the first one is that both have the
same 𝕃2 error bounds, even though one clearly has more freedom. A second remarkable
property is that the collective oscillations appearing in both approximations allow some
kind of averaging of the error, and thus the error of the superposition of Gaussians is
lower than the sum of each individual error. However, these two methods are not mass
or energy conserving for a non quadratic potential. This has to be put in perspective
with the Dirac-Frenkel variational approach which is mass and energy conserving. See
[51, Section 5.1] for a nice presentation of both methods and their properties, including
error bounds.

Another important variant of the Gaussian wavepackets is due to Hagedorn and is
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now called Hagedorn wavepackets [39]. We know that the Hermite functions are the eigen-
functions of the harmonic oscillator −Δ + |𝑥|2, what are the eigenfunctions for −Δ + 𝑉 if
𝑉 is allowed to be any quadratic function? The answer is Hagedorn’s functions. Moreover,
Hagedorn’s functions allow more flexibility in terms of position and momentum than the
usual Hermite functions, and most importantly they are multidimensional. Since Hagedorn
wavepackets mimic Hermite functions, we can expect that they also satisfy some relations
like sum rules and Rodriguez formula. Some of their properties have been proven in [52].
Some more details about the Hagedorn wavepackets can be found in [51, Section 4].

We refer to [51] for a recent, detailed and comprehensive review of the variational
Gaussian wavepackets.

The variational methods mentioned above were studied and used with the linear
Schrödinger equation (IV-2.1), or its semiclassical scaling (IV-1.5). To the author’s knowl-
edge, they were never used yet in the nonlinear setting. One of the aims of the work
presented in Chapter IV-4 is to show that the variational methods can also be used in the
nonlinear setting. Moreover, we will only deal with Gaussian functions, and this is mainly
because they are well adapted for the linear Schrödinger equation. If one is interested in
the cubic nonlinear Schrödinger equation, Gaussian functions are not adapted anymore
but good candidates are the solitons. Hence, Chapter IV-4 can be understood as a first
step towards the numerical simulation of the cubic nonlinear Schrödinger equation using
solitons, which will be studied in future works.

The Dirac-Frenkel principle

The presentation given here follows the line of [51, Section 3.1]. In the context of this
section, we are using the Dirac-Frenkel principle in order to numerically solve the linear
Schrödinger equation (IV-2.1). The “Variational Gaussian wavepacket” method consists
in seeking an approximation 𝑢(𝑡) to the solution 𝜓(𝑡), such that 𝑢(𝑡) lies in the following
manifold:

ℳ = {𝑣 ∈ 𝕃2(ℝ𝑑)∣
𝑣(𝑥) = exp [𝑖 ((𝑥 − 𝑞)𝑇𝐶(𝑥 − 𝑞) + 𝑝𝑇(𝑥 − 𝑞) + 𝜁)]

𝑝, 𝑞 ∈ ℝ𝑑, 𝜁 ∈ ℂ, 𝐶 = 𝐶𝑇 ∈ ℂ𝑑×𝑑, Im 𝐶 positive definite.
} .

In order to have 𝑢(𝑡) ∈ ℳ at all times, we use the Dirac-Frenkel principle: it imposes that
the residual of the Schrödinger equation is orthogonal to the tangent space 𝒯𝑢(𝑡)ℳ of the
manifold ℳ at the point 𝑢(𝑡). In other words, we are imposing the following condition:

𝜕𝑡𝑢(𝑡) ∈ 𝒯𝑢(𝑡)ℳ such that

(𝑣, −𝑖𝜕𝑡𝑢(𝑡) − 𝐻𝑢(𝑡))𝕃2(ℝ𝑑) = 0, ∀𝑣 ∈ 𝒯𝑢(𝑡)ℳ.
(IV-2.12)
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The quantity 𝜕𝑡𝑢(𝑡) ∈ 𝒯𝑢(𝑡)ℳ is an approximation to the true time derivative of 𝑢(𝑡),
and (IV-2.12) translates the fact that we are orthogonally projecting the Schrödinger
equation onto the tangent space of the manifold at point 𝑢(𝑡). Said differently, what
is the best approximation of the time derivative of 𝑢(𝑡) such that 𝑢(𝑡) remains in the
manifold? The answer is given by the orthogonal projection onto 𝒯𝑢(𝑡)ℳ of the exact
time derivative of 𝑢(𝑡), i.e. by the quantity 𝜕𝑡𝑢(𝑡) that satisfies (IV-2.12).

Moreover, the tangent space 𝒯𝑢(𝑡)ℳ consists of derivatives of paths on ℳ passing
through 𝑢(𝑡), thus

𝒯𝑢(𝑡)ℳ =
⎧{
⎨{⎩

𝑖
2

(−2 ̇𝑞𝐶(𝑥 − 𝑞) + (𝑥 − 𝑞)𝑇 ̇𝐶(𝑥 − 𝑞) + ̇𝑝𝑇(𝑥 − 𝑞) − 𝑝𝑇 ̇𝑞 + ̇𝜁) 𝑢(𝑡)

̇𝑝, ̇𝑞 ∈ ℝ𝑑, ̇𝜁 ∈ ℂ, ̇𝐶 = ̇𝐶𝑇 ∈ ℂ𝑑×𝑑

⎫}
⎬}⎭

= {𝜂𝑢 | 𝜂 is a complex 𝑑-variate polynomial of order at most 2} .

We note that condition (IV-2.12) is equivalent in this case to the McLachlan approach
[58], which consists in finding a minimizer of the following problem:

min
𝜑∈𝒯𝑢(𝑡)ℳ

‖𝑖𝜑 − 𝐻𝑢(𝑡)‖𝕃2(ℝ𝑑).

When a minimizer 𝜑 is obtained, exactly or approximately, we then enforce the time
derivative: 𝜕𝑡𝑢(𝑡) = 𝜑. The equivalence between Dirac-Frenkel and McLachlan principles
is due to [17], and the fact that the manifold can be reparametrized as follows:

ℳ =

⎧{{
⎨{{⎩

𝑣 ∈ 𝕃2(ℝ𝑑)
∣
∣
∣
∣

𝑣(𝑥) = exp [𝑥𝑇(𝐶Re + 𝑖𝐶Im )𝑥 + ( ̃𝑝Re + 𝑖 ̃𝑝Im )𝑥 + 𝛾Re + 𝑖𝛾Im ]

̃𝑝Re , ̃𝑝Im , 𝛾Re , 𝛾Im ∈ ℝ𝑑, 𝐶 = (𝐶Re + 𝑖𝐶Im ) = 𝐶𝑇 ∈ ℂ𝑑×𝑑,

Im 𝐶 positive definite.

⎫}}
⎬}}⎭

.

Since the manifold ℳ can be parametrized by pairs of complementary parameters (in the
sense of [17]), then McLachlan and Dirac-Frenkel principles are equivalent on ℳ.

A remarkable thing is that, if the potential 𝑉 is quadratic, then the approximation
𝑢(𝑡) of 𝜓(𝑡) is exact. Indeed, −Δ𝑢(𝑡)+𝑉 𝑢(𝑡) is a complex 𝑑-variate polynomial or order 2,
and therefore belongs to the tangent space 𝒯𝑢(𝑡)ℳ. Thus, the true time derivative of 𝑢(𝑡)
belongs to the tangent space 𝒯𝑢(𝑡)ℳ, and thus the best approximation 𝜕𝑡𝑢(𝑡) ∈ 𝒯𝑢(𝑡)ℳ
of the true time derivative is the true time derivative itself. Therefore, 𝑢(𝑡) and 𝜓(𝑡)
satisfy exactly the same equation, and no approximation is done here. This is probably
the reason that lead Heller to consider local quadratic approximations of the potential if
𝑉 is not quadratic.

Another great property of the Dirac-Frenkel principle is that it conserves mass and
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energy. We do not give the proof here, since it will be proven later in one setting of interest
to us (see Section IV-4.2.2).

We also note that one general way to obtain 𝜕𝑡𝑢(𝑡) in (IV-2.12) consists in obtaining a
basis of the tangent space 𝒯𝑢(𝑡)ℳ and to compute exactly the 𝕃2 inner products involved.
If we denote by 𝐵𝑢(𝑡) a basis of the tangent space 𝒯𝑢(𝑡)ℳ, then (IV-2.12) is equivalent to

𝜕𝑡𝑢(𝑡) ∈ 𝒯𝑢(𝑡)ℳ such that

(𝑏, −𝑖𝜕𝑡𝑢(𝑡))𝕃2(ℝ𝑑) = (𝑏, 𝐻𝑢(𝑡))𝕃2(ℝ𝑑) , ∀𝑏 ∈ 𝐵𝑢(𝑡).

The basis is finite-dimensional, so the above conditions can be expressed using a finite
linear system of the form AE = S. Here, A is the projection matrix, E is a vector
containing the time derivatives of the wavepackets parameters 𝑝, 𝑞, 𝐶, 𝜁, and S is a vector
containing the 𝕃2 inner products appearing on the right-hand side. It is important to
note that, if the family 𝐵𝑢(𝑡) has some redundancy, i.e. linear dependence between its
functions, then the Dirac-Frenkel principle is known to yield unsatisfying results [47].
One way to overcome these issues is to drop the Thawed Gaussian approximation and to
use the Frozen Gaussian approximation, or to use a matrix pseudoinverse instead of the
inverse.

We refer to [51, Section 3] for more details about the Dirac-Frenkel method, including
some error bounds. Some notable references are [26, 35, 68].
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E
R 3

Modulation of solutions as a
theoretical tool

This Chapter and the following are based on an unpublished joint work with Erwan
Faou and Pierre Raphaël [30].

The basic idea is to consider functions that depends on a small number of time-
dependent parameters, and to find the time derivatives of the parameters so that the
function satisfies the linear Schrödinger equation. This function is called a modulated
solution, and the general idea is modulation.

The initial idea comes from the works of Merle and Raphaël [60], Martel and Raphaël
[57], and Faou and Raphaël [31], who study the infinite-time blow-up of the Schrödinger
equation using modulated solutions. Borrowing the vocabulary from Faou and Raphaël,
the modulated functions will be called bubbles. Inspired by these theoretical works, we
use their ideas in order to devise an exact numerical algorithm. Basically, the algorithm
consists in first decomposing the initial condition 𝜓0 into a modulated Hermite basis, and
then use the fact that the Hermite functions are eigenfunctions of the Quantum harmonic
oscillator. This allows us to find conditions on the time-derivative of the modulation
parameters, under the form of ODEs. It happens that these ODEs can be integrated
exactly in this case, and this gives an exact numerical algorithm for the simulation of the
time-dependent harmonic oscillator with arbitrary initial data in 𝕃2(ℝ𝑑).

This Chapter only deals with the linear case, the next Chapter will treat the case of
the cubic nonlinear Schrödinger equation:

𝑖𝜕𝑡𝜓 + Δ𝑥𝜓 − |𝑥|2𝜓 = 𝜓|𝜓|2, 𝑥 ∈ ℝ𝑑. (cNLS)

The end goal of the work done in the linear case is to make the nonlinear case a little
simpler, as well as to introduce gently the idea behind the modulation.

Anticipating for the work to be done in the nonlinear case, we are motivated by recent
works [57, 31] to discretize 𝜓, the solution to the Schrödinger equation (cNLS), as a sum
of 𝑁 modulated functions:

𝜓(𝑡, 𝑥) ≈ 𝑢(𝑡, 𝑥) ∶=
𝑁

∑
𝑗=1

𝑢𝑗(𝑡, 𝑥), (IV-3.1)
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where

𝑢𝑗(𝑡, 𝑥) ∶= 𝐴𝑗

𝐿𝑗 𝑒𝑖𝛾𝑗+𝑖𝐿𝑗𝛽𝑗⋅𝑦𝑗−𝑖 𝐵𝑗
4 |𝑦𝑗|2𝑣𝑗(𝑠𝑗, 𝑦𝑗), with

∣
∣
∣
∣

d𝑠𝑗

d𝑡
∶= 1

(𝐿𝑗)2 ,

𝑦𝑗 ∶= 𝑥 − 𝑋𝑗

𝐿𝑗 ,
(IV-3.2)

and 𝑁 ∈ ℕ∗. In the cited works, the modulated functions 𝑢𝑗 are called bubbles. Through-
out this work, we may refer to the variables (𝑠𝑗, 𝑦𝑗) as the modulation frame of the bubble
labelled 𝑗.

The time dependence of the parameters 𝐴𝑗, 𝐿𝑗, 𝐵𝑗, 𝑋𝑗, 𝛽𝑗, 𝛾𝑗 has not been written in
(IV-3.2) for the sake of clarity, but it is one of the main ingredients of the approach. More
precisely, the core idea is to plug the ansatz (IV-3.1)-(IV-3.2) into (cNLS) in order to
obtain ODEs for the parameters.

Inspired by these successful theoretical works, we retain the idea of approximating
solutions to (cNLS) by modulating the parameters 𝐴𝑗, 𝐿𝑗, 𝐵𝑗, 𝑋𝑗, 𝛽𝑗, 𝛾𝑗 in such a
way that 𝑣𝑗(𝑠𝑗, 𝑦𝑗) satisfies a smoother in time equation. – typically a stationary soliton
equation such as

−Δ𝑦𝑣 + |𝑦|2𝑣 + |𝑣|2𝑣 = 𝜆𝑣. (IV-3.3)

However, from the numerical point of view, choosing the 𝑣𝑗 as stationary solitons would
require first to solve explicitly the nonlinear equation (IV-3.3) and more problematically, to
estimate numerically the nonlinear interactions between the modulated solitons by using
the Dirac-Frenkel-MacLachlan principle. The latter consists essentially in a projection
onto the manifold of modulated solitons, which is in practice very difficult to evaluate
numerically. Moreover, one is naturally interested in using a splitting strategy between
the linear and nonlinear parts, which would typically destroy the soliton structure in the
equation. Following this idea, we split the Schrödinger equation (cNLS) into the linear
part

𝑖𝜕𝑡𝜓 + Δ𝑥𝜓 − |𝑥|2𝜓 = 0, (HO)

and the nonlinear part
𝑖𝜕𝑡𝜓 = 𝜓|𝜓|2. (NL)

The linear equation (HO) is also called the Quantum harmonic oscillator. For brevity,
we will call it simply “harmonic oscillator”. Traditional well-known numerical schemes
are based on this abstract decomposition and it is easy to determine high-order splitting
methods obtained by solving alternately the linear and nonlinear parts, like Lie, Strang
Splitting or triple jump composition, see for instance [59, 40, 19]. However, the approx-
imation of the solution to each of these two parts remains to be done using time and
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space discretizations. They are traditionally solved using grid-based numerical schemes
(see for instance [8, 66, 28, 83, 14]). The computational complexity of grid-based methods
is always an issue due to the bad scaling with respect to the dimension. Fortunately, using
the modulation techniques given above, the solution to the linear part (HO) can be sim-
ulated exactly, in a straightforward manner, and very efficiently by considering Hermite
decomposition of the functions 𝑣𝑗. The computational cost for the simulation of the linear
part only is 𝒪(𝑁 ⋅ 𝑑) – recall 𝑁 is the number of bubbles and 𝑑 the dimension – to be
compared with grid-based complexities of order 𝒪(𝑀𝑑) where 𝑀 would be the number of
discretization points in each dimension.

Notations

When dealing with the parameters of bubble labelled 𝑗, we write 𝑗 as an exponent.
For instance 𝐿𝑗 is the parameter 𝐿 corresponding to bubble 𝑗, and not some quantity 𝐿
to the power 𝑗. If 𝐿𝑗 has to be exponentiated, we will write (𝐿𝑗)𝑝 to denote 𝐿𝑗 to the
power 𝑝.

We write 𝑋𝑗
𝑘 to denote the 𝑘-th component of the vector 𝑋𝑗 (which is the 𝑋 parameter

of bubble 𝑗). Same goes for 𝛽𝑗 and 𝑦𝑗.
When used as subscripts, 𝑡 and 𝑠 will always denote a time derivative (either with

respect to time 𝑡 or 𝑠). For instance, 𝑋𝑗
𝑠 denotes the derivative of the vector 𝑋𝑗 with

respect to time. We may also write 𝑋𝑗
𝑘,𝑠 to denote the derivative with respect to time 𝑠

of the 𝑘-th component of the vector 𝑋𝑗 (same goes for 𝛽𝑗 and 𝑦𝑗). More explicitely,

𝑋𝑗
𝑙,𝑠(𝑠) =

d𝑋𝑗
𝑙 (𝑠)

d𝑠
.

We use the shorthands 𝜕𝑘 = 𝜕
𝜕𝑥𝑘

or 𝜕𝑘 = 𝜕
𝜕𝑦𝑘

, and the context will clarify which one
of the two we use. We also use 𝜕𝑡 = 𝜕

𝜕𝑡 and 𝜕𝑠 = 𝜕
𝜕𝑠 .

IV-3.1 Modulation

The idea of relying on time-dependent parameters to represent the solution, or an
approximation, is not new and has been widely studied in the linear case, i.e. when the
cubic nonlinearity is replaced by some multiplication with a potential. When the 𝑣𝑗 are
chosen as Gaussian functions, it has been called Variational Gaussian wavepackets and
extensively analyzed by Lasser and Lubich [51], where they applied the Dirac-Frenkel-
MacLachlan principe (DF principle) to the linear Schrödinger equation with potential.

More generally, this type of method using Gaussian functions is widely used in the field
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of Chemical Physics [42, 44, 24, 86, 1]. The different methods used are variations of the
same idea, and possess many names: superposition of Gaussian Wavepackets, Gaussian
beams, Thawed Gaussians, Frozen Gaussian…We refer to Section IV-2.2.4 for more details
about variational Gaussian wavepackets.

At the end of this Chapter we obtain an algorithm which yields exact solutions to
the harmonic oscillator (HO) by using modulated Gauss-Hermite functions. This algo-
rithm can be easily implemented numerically, is grid-free, and is also able to capture high
oscillations of the solution.

IV-3.1.1 Conservation Laws

We recall classical laws for the harmonic oscillator and cubic nonlinear Schrödinger
equations (see for instance [79, 48]).

Before proceeding to the main conservation result, we will need an intermediate result,
known as the Pohozaev identity.

Lemma IV.1: Pohozaev Identity

Let 𝑥 ∈ ℝ𝑑, and 𝑓 ∈ 𝐻1(ℝ𝑑) such that 𝑥𝑓 ∈ 𝕃2(ℝ𝑑). Then

∫ Δ𝑓(𝑑
2

𝑓 + 𝑥 ⋅ ∇𝑓)𝑑𝑥 = − ∫ |∇𝑓|2𝑑𝑥. (IV-3.4)

Proof. By density, we only need to prove equation (IV-3.4) for 𝑓 ∈ 𝐶∞
𝑐 (ℝ𝑑), where

𝐶∞
𝑐 (ℝ𝑑) denotes the space of infinitely smooth functions with compact support in ℝ𝑑.

Let
𝑓𝜆(𝑥) ∶= 𝜆𝑑

2 𝑓(𝜆𝑥),

then
∫ |∇𝑓𝜆|2𝑑𝑥 = 𝜆2 ∫ |∇𝑓|2𝑑𝑥.

Differentiating this identity with respect to 𝜆 and evaluating the result at 𝜆 = 1 yields

∫ ∇𝑓 ⋅ ∇ (𝑑
2

𝑓 + 𝑥 ⋅ ∇𝑓)𝑑𝑥 = ∫ |∇𝑓|2𝑑𝑥.

We integrate by parts the LHS, and obtain (IV-3.4).

We can now state the result about conserved quantities in (cNLS):

157



Part IV, Chapter IV-3 – Modulation of solutions as a theoretical tool

Lemma IV.2: Conserved quantities in dimension 𝑑 = 2

We consider a two-parameter family of equations containing (HO) and (cNLS):

𝑖𝜕𝑡𝜓 + 𝜇(Δ𝜓 − |𝑥|2𝜓) = 𝜆|𝜓|2𝜓, 𝜇, 𝜆 ∈ ℝ.

The (radial) conservation laws are mass ‖𝜓‖𝕃2 , energy

𝐸𝜇,𝜆 = 𝜇
2

⟨𝐻𝜓, 𝜓⟩ + 𝜆
4

⟨|𝜓|2𝜓, 𝜓⟩ ,

where 𝐻 = −Δ + |𝑥|2 and ⟨𝑓, 𝑔⟩ ∶= ∫
ℝ𝑑 𝑓 ̄𝑔, and momentum

𝑀𝜇,𝜆 = (𝐸𝜇,𝜆 − 𝜇‖𝑥𝜓‖2
𝕃2)2 + 𝜇2 (Im ∫ 𝑥 ⋅ ∇𝜓 ̄𝜓)

2
,

and the same applied to any power (−𝐻)𝑟𝜓, for 𝑟 ≥ 1. There also holds the non radial
conservation law

𝒫𝑗 = 1
4

(Im ∫ 𝜕𝑗𝜓 ̄𝜓)
2

+ 𝜇2 (∫ 𝑥𝑗|𝜓|2)
2

, 𝑗 = 1, 2.

Proof. The proof is long, but since it is mostly composed of algebraic manipulations we
can summarize now the main tools: the mass and energy conservations are obtained by
simply differentiating the expression of these quantities with respect to time. The non
radial conservation law is obtained by integrating by parts and differentiating ∫ 𝑥𝑗|𝜓|2.
For the momentum conservation, we first differentiate with respect to time, then integrate
by parts. After some algebraic manipulations, we use the Pohozaev identity (Lemma IV.1),
and use the conservation of energy to conclude.

The proof ends on page 162.

Mass conservation:

d
d𝑡

‖𝜓‖2
𝕃2 = d

d𝑡
∫ |𝜓|2 = 2Re ∫ ̄𝜓𝜕𝑡𝜓 = 2Re ∫ −𝑖 ̄𝜓 (−𝜇Δ𝜓 + 𝜇|𝑥|2𝜓 + 𝜆|𝜓|2𝜓)

= 2Re ∫ −𝑖 (𝜇 ̄𝜓Δ𝜓 + 𝜇|𝑥|2|𝜓|2 + 𝜆|𝜓|4) = 2𝜇Re ∫ −𝑖 ̄𝜓Δ𝜓

= 2𝜇Re ∫ 𝑖|∇𝜓|2 = 0.
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Energy conservation:

d
d𝑡

𝐸𝜇,𝜆 = 1
2

d
d𝑡

⟨−𝜇Δ𝜓 + 𝜇|𝑥|2𝜓 + 𝜆
2

|𝜓|2𝜓, 𝜓⟩

= 1
2

(−2𝜇Re ⟨Δ𝜓, 𝜕𝑡𝜓⟩ + 2𝜇Re ⟨|𝑥|2𝜓, 𝜕𝑡𝜓⟩ + 4Re ⟨𝜆
2

|𝜓|2𝜓, 𝜕𝑡𝜓⟩)

= Re (𝑖⟨𝜕𝑡𝜓, 𝜕𝑡𝜓⟩) = 0.

For the momentum, we compute

1
2

d
d𝑡

∫ |𝑥|2|𝜓|2 = 1
2

d
d𝑡

⟨|𝑥|2𝜓, 𝜓⟩ = Re ⟨|𝑥|2𝜓, 𝜕𝑡𝜓⟩ = Re ⟨|𝑥|2𝜓, 𝑖𝜇Δ𝜓 − 𝑖𝜇|𝑥|2𝜓 − 𝑖𝜆|𝜓|2𝜓⟩

= 𝜇Im ⟨|𝑥|2𝜓, Δ𝜓⟩ = 𝜇Im ∫ |𝑥|2𝜓Δ ̄𝜓 = −𝜇Im ∫ ∇ ̄𝜓 ⋅ ∇ (|𝑥|2𝜓)

= −𝜇Im ∫ ∇ ̄𝜓 ⋅ 2𝑥𝜓 − 𝜇Im ∫ ∇ ̄𝜓 ⋅ ∇𝜓|𝑥|2 = −2𝜇Im ∫ 𝑥 ⋅ ∇ ̄𝜓𝜓

= 2𝜇Im ∫ 𝑥 ⋅ ∇𝜓 ̄𝜓, (IV-3.5)

and
1
2

d
d𝑡

Im ∫ 𝑥 ⋅ ∇𝜓 ̄𝜓 = 1
2

Im ∫ (𝑥 ⋅ ∇𝜕𝑡𝜓 ̄𝜓 + 𝑥 ⋅ ∇𝜓𝜕𝑡
̄𝜓) .

An integration by parts gives

∫ 𝑥 ⋅ ∇𝜙𝜓 = − ∫ 𝜙∇ ⋅ (𝑥𝜓) = − ∫ 𝜙 (𝜓𝑑 + 𝑥 ⋅ ∇𝜓) ,

hence

1
2

d
d𝑡

Im ∫ 𝑥 ⋅ ∇𝜓 ̄𝜓 = 1
2

Im ∫ (−𝜕𝑡𝜓 ( ̄𝜓𝑑 + 𝑥 ⋅ ∇ ̄𝜓) + 𝑥 ⋅ ∇𝜓𝜕𝑡
̄𝜓)

= 1
2

Im ∫ (−𝜕𝑡𝜓 ̄𝜓𝑑 − 𝜕𝑡𝜓𝑥 ⋅ ∇ ̄𝜓 + 𝜕𝑡
̄𝜓𝑥 ⋅ ∇𝜓)

= 1
2

Im ∫ (−𝜕𝑡𝜓 ̄𝜓𝑑 + 2𝑖Im [𝜕𝑡
̄𝜓𝑥 ⋅ ∇𝜓])

= −𝑑
2

Im ∫ 𝜕𝑡𝜓 ̄𝜓 + Im ∫ 𝜕𝑡
̄𝜓𝑥 ⋅ ∇𝜓.

Recall the equation satisfied by 𝜓:

𝜕𝑡𝜓 = 𝑖𝜇Δ𝜓 − 𝑖𝜇|𝑥|2𝜓 − 𝑖𝜆|𝜓|2𝜓,
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therefore

1
2

d
d𝑡

Im ∫ 𝑥 ⋅ ∇𝜓 ̄𝜓 = −𝑑
2

Im ∫ 𝑖 [𝜇Δ𝜓 − 𝜇|𝑥|2𝜓 − 𝜆|𝜓|2𝜓] ̄𝜓

+ Im ∫ 𝑖 [−𝜇Δ ̄𝜓 + 𝜇|𝑥|2 ̄𝜓 + 𝜆|𝜓|2 ̄𝜓] 𝑥 ⋅ ∇𝜓.

We have

−𝑑
2

Im ∫ 𝑖 [𝜇Δ𝜓 − 𝜇|𝑥|2𝜓 − 𝜆|𝜓|2𝜓] ̄𝜓 = 𝑑
2

∫ [𝜇|∇𝜓|2 + 𝜇|𝑥|2|𝜓|2 + 𝜆|𝜓|4] ,

and

Im ∫ 𝑖 [−𝜇Δ ̄𝜓 + 𝜇|𝑥|2 ̄𝜓 + 𝜆|𝜓|2 ̄𝜓] 𝑥 ⋅ ∇𝜓 = Re ∫ [−𝜇Δ ̄𝜓 + 𝜇|𝑥|2 ̄𝜓 + 𝜆|𝜓|2 ̄𝜓] 𝑥 ⋅ ∇𝜓.

Moreover,

∫ |𝑥|2 ̄𝜓𝑥 ⋅ ∇𝜓 = − ∫ 𝜓∇ ⋅ (𝑥|𝑥|2 ̄𝜓) = − ∫ 𝜓 (𝑑|𝑥|2 ̄𝜓 + 2|𝑥|2 ̄𝜓 + 𝑥|𝑥|2 ⋅ ∇ ̄𝜓)

⟺ ∫ |𝑥|2 ̄𝜓𝑥 ⋅ ∇𝜓 + ∫ |𝑥|2 ̄𝜓𝑥 ⋅ ∇𝜓 = − ∫ 𝜓 (𝑑|𝑥|2 ̄𝜓 + 2|𝑥|2 ̄𝜓)

⟺ Re ∫ |𝑥|2 ̄𝜓𝑥 ⋅ ∇𝜓 = − ∫ 𝜓 (𝑑
2

|𝑥|2 ̄𝜓 + |𝑥|2 ̄𝜓) .

Finally,

1
2

d
d𝑡

Im ∫ 𝑥 ⋅ ∇𝜓 ̄𝜓 = 𝑑
2

∫ [𝜇|∇𝜓|2 + 𝜇|𝑥|2|𝜓|2 + 𝜆|𝜓|4]

+ Re ∫ [−𝜇Δ ̄𝜓 + 𝜆|𝜓|2 ̄𝜓] 𝑥 ⋅ ∇𝜓 − 𝜇 ∫ 𝜓 (𝑑
2

|𝑥|2 ̄𝜓 + |𝑥|2 ̄𝜓)

= 𝑑
2

∫ [𝜇|∇𝜓|2 + 𝜆|𝜓|4] + Re ∫ [−𝜇Δ ̄𝜓 + 𝜆|𝜓|2 ̄𝜓] 𝑥 ⋅ ∇𝜓 − 𝜇 ∫ |𝑥|2|𝜓|2

= 𝑑
2

𝜇 ∫ |∇𝜓|2 − 𝜇 ∫ |𝑥|2|𝜓|2 + 𝑑
2

𝜆 ∫ |𝜓|4 + Re ∫ [−𝜇Δ ̄𝜓 + 𝜆|𝜓|2 ̄𝜓] 𝑥 ⋅ ∇𝜓.

We are in the two-dimensional case 𝑑 = 2, hence

1
2

d
d𝑡

Im ∫ 𝑥 ⋅ ∇𝜓 ̄𝜓 = ∫ 𝜇|∇𝜓|2 − 𝜇 ∫ |𝑥|2|𝜓|2 + 𝜆 ∫ |𝜓|4 + Re ∫ [−𝜇Δ ̄𝜓 + 𝜆|𝜓|2 ̄𝜓] 𝑥 ⋅ ∇𝜓

= 2𝐸𝜆 + 𝜆
2

∫ |𝜓|4 − 2𝜇 ∫ |𝑥|2|𝜓|2 + Re ∫ [−𝜇Δ ̄𝜓 + 𝜆|𝜓|2 ̄𝜓] 𝑥 ⋅ ∇𝜓.
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Moreover,

∫ |𝜓|2 ̄𝜓𝑥 ⋅ ∇𝜓 = − ∫ 𝜓∇ ⋅ (|𝜓|2 ̄𝜓𝑥)

= − ∫ 𝜓 (2Re ( ̄𝜓∇𝜓) ⋅ ̄𝜓𝑥 + |𝜓|2∇ ̄𝜓 ⋅ 𝑥 + 𝑑|𝜓|2 ̄𝜓)

= − ∫ (2Re ( ̄𝜓∇𝜓) ⋅ |𝜓|2𝑥 + 𝜓|𝜓|2∇ ̄𝜓 ⋅ 𝑥 + 2|𝜓|4)

⟺ 2Re ∫ |𝜓|2 ̄𝜓𝑥 ⋅ ∇𝜓 = −2Re ∫ ̄𝜓∇𝜓 ⋅ |𝜓|2𝑥 − 2 ∫ |𝜓|4

⟺ Re ∫ |𝜓|2 ̄𝜓𝑥 ⋅ ∇𝜓 = −1
2

∫ |𝜓|4,

Finally,

1
2

d
d𝑡

Im ∫ 𝑥 ⋅ ∇𝜓 ̄𝜓 = 2𝐸𝜆 + 𝜆
2

∫ |𝜓|4 − 2𝜇 ∫ |𝑥|2|𝜓|2 − 𝜇Re ∫ Δ ̄𝜓𝑥 ⋅ ∇𝜓 − 𝜆
2

∫ |𝜓|4

= 2𝐸𝜆 − 2𝜇 ∫ |𝑥|2|𝜓|2 − 𝜇Re ∫ Δ ̄𝜓𝑥 ⋅ ∇𝜓.

We then use the Pohozaev identity (IV-3.4) in dimension 𝑑 = 2, which yields

Re (∫ 𝑥 ⋅ ∇𝜓Δ ̄𝜓) = 0.

Therefore,
1
2

d
d𝑡

Im ∫ 𝑥 ⋅ ∇𝜓 ̄𝜓 = 2𝐸𝜇,𝜆 − 2𝜇 ∫ |𝑥|2|𝜓|2.

From the conservation of the energy 𝐸𝜆 and equation (IV-3.5),

d2

d𝑡2 Im ∫ 𝑥 ⋅ ∇𝜓 ̄𝜓 = −16𝜇2Im ∫ 𝑥 ⋅ ∇𝜓 ̄𝜓.

Hence, the conservation laws

1
16

( d
d𝑡

[Im ∫ 𝑥 ⋅ ∇𝜓 ̄𝜓])
2

+ 𝜇2 (Im ∫ 𝑥 ⋅ ∇𝜓 ̄𝜓)
2

= (𝐸𝜇,𝜆 − 𝜇‖𝑥𝜓‖2
𝕃2)2 + 𝜇2 (Im ∫ 𝑥 ⋅ ∇𝜓 ̄𝜓)

2
.

For the non radial conservation law:

d
d𝑡

Im ∫ 𝜕𝑗𝜓 ̄𝜓 = −2Im ∫ 𝜕𝑡𝜓𝜕𝑗𝜓 = 2Re ∫ 𝑖𝜕𝑡𝜓𝜕𝑗𝜓

= 2𝜇 ∫ |𝑥|2Re (𝜓𝜕𝑗𝜓) = −2𝜇 ∫ 𝑥𝑗|𝜓|2,
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owing to the facts that integrations by parts yield

−Re ∫ Δ𝜓𝜕𝑗
̄𝜓 = Re ∫ 𝜕𝑗𝜓Δ ̄𝜓,

and

2Re ∫ |𝜓|2𝜓𝜕𝑗
̄𝜓 = ∫ |𝜓|2𝜕𝑗|𝜓|2 = − ∫ |𝜓|2𝜕𝑗|𝜓|2 ⟹ Re ∫ |𝜓|2𝜓𝜕𝑗

̄𝜓 = 0.

We also have

1
2

d
d𝑡

∫ 𝑥𝑗|𝜓|2 = Re ∫ 𝑥𝑗𝜕𝑡𝜓 ̄𝜓 = Im ∫ 𝑥𝑗𝑖𝜕𝑡𝜓 ̄𝜓 = 𝜇Im ∫ −Δ𝜓𝑥𝑗
̄𝜓 = 𝜇Im ∫ 𝜕𝑗𝜓 ̄𝜓.

Hence the relations
∣
∣
∣
∣

d
d𝑡

∫ 𝑥𝑗|𝜓|2 = 2𝜇Im ∫ 𝜕𝑗𝜓 ̄𝜓

d
d𝑡

Im ∫ 𝜕𝑗𝜓 ̄𝜓 = −2𝜇 ∫ 𝑥𝑗|𝜓|2,

which have the conservation law

𝒫𝑗 = 1
4

(Im ∫ 𝜕𝑗𝜓 ̄𝜓)
2

+ 𝜇2 (∫ 𝑥𝑗|𝜓|2)
2

.

IV-3.1.2 Obtaining modulation equations

By linearity of the harmonic oscillator, we can reduce the problem to calculating the
evolution of the decomposition (IV-3.2) for only one bubble 𝑣𝑗. Throughout this Section,
we fix an index 𝑗 ∈ [[1, 𝑁]], and since this index is fixed we will not write it anymore.
Hence, we can omit the superscript 𝑗 for the time being. The notation 𝑢 now denotes 𝑢𝑗

since we are focusing on bubble labelled 𝑗 and omitting the superscript. Our aim here
is to see how the parameters and their time derivative are involved when plugging the
decomposition (IV-3.2) into (HO).

Recall the expression of 𝑢(𝑡, 𝑥):

𝑢(𝑡, 𝑥) = 𝐴
𝐿

𝑒𝑖𝛾+𝑖𝐿𝛽⋅𝑦−𝑖 𝐵
4 |𝑦|2𝑣(𝑠, 𝑦), 𝑦 = 𝑥 − 𝑋(𝑡)

𝐿(𝑡)
, d𝑠

d𝑡
= 1

𝐿(𝑡)2 . (IV-3.6)

We start by computing, in dimension 𝑑 ≥ 1,

Δ𝑥𝑢 = 𝐴𝑒𝑖𝛾

𝐿3 Δ𝑦 [𝑒𝑖𝐿𝛽⋅𝑦−𝑖 𝐵
4 |𝑦|2𝑣(𝑠, 𝑦)] .
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By differentiating with respect to the 𝑘-th coordinate, we get

𝜕𝑘 [𝑒𝑖𝐿𝛽⋅𝑦−𝑖 𝐵
4 |𝑦|2𝑣] = 𝑒𝑖𝐿𝛽⋅𝑦−𝑖 𝐵

4 |𝑦|2 [𝜕𝑘𝑣 + 𝑖 (𝐿𝛽𝑘 − 𝐵
2

𝑦𝑘) 𝑣] , 𝑘 = 1, … , 𝑑. (IV-3.7)

Differentiating again with respect to the 𝑘-th coordinate:

𝜕2
𝑘 [𝑒𝑖𝐿𝛽⋅𝑦−𝑖 𝐵

4 |𝑦|2𝑣]

= 𝑒𝑖𝐿𝛽⋅𝑦−𝑖 𝐵
4 |𝑦|2

⎡
⎢⎢
⎣

𝜕2
𝑘𝑣 + 𝑖 (𝐿𝛽𝑘 − 𝐵

2
𝑦𝑘) 𝜕𝑘𝑣 − 𝑖𝐵

2
𝑣

+ 𝑖 (𝐿𝛽𝑘 − 𝐵
2

𝑦𝑘) [𝜕𝑘𝑣 + 𝑖 (𝐿𝛽𝑘 − 𝐵
2

𝑦𝑘) 𝑣]

⎤
⎥⎥
⎦

= 𝑒𝑖𝐿𝛽⋅𝑦−𝑖 𝐵
4 |𝑦|2 ⎡

⎢
⎣

𝜕2
𝑘𝑣 + 𝑖 (2𝐿𝛽𝑘 − 𝐵𝑦𝑘) 𝜕𝑘𝑣

+ (−𝑖𝐵
2

− 𝐿2𝛽2
𝑘 + 𝐿𝐵𝛽𝑘𝑦𝑘 − 𝐵2

4
𝑦2

𝑘) 𝑣
⎤
⎥
⎦

. (IV-3.8)

By summing (IV-3.8) over 𝑘 = 1, … , 𝑑, we get

Δ𝑥𝑢 = 𝐴
𝐿3 𝑒𝑖𝛾+𝑖𝐿𝛽⋅𝑦−𝑖 𝐵

4 |𝑦|2

× [Δ𝑦𝑣 + 𝑖 (2𝐿𝛽 − 𝐵𝑦) ⋅ ∇𝑣 + (−𝑖𝐵
2

𝑑 − 𝐿2|𝛽|2 + 𝐿𝐵𝛽 ⋅ 𝑦 − 𝐵2

4
|𝑦|2) 𝑣] .

We have

−|𝑥|2𝑢 = −𝐴
𝐿

𝑒𝑖𝛾+𝑖𝐿𝛽⋅𝑦−𝑖 𝐵
4 |𝑦|2 |𝐿𝑦 + 𝑋|2 𝑣

= 𝐴
𝐿3 𝑒𝑖𝛾+𝑖𝐿𝛽⋅𝑦−𝑖 𝐵

4 |𝑦|2 (−𝐿4|𝑦|2 − 2𝐿3𝑋 ⋅ 𝑦 − 𝐿2|𝑋|2) 𝑣,

thus

(Δ𝑥 − |𝑥|2)𝑢 = 𝐴
𝐿3 𝑒𝑖𝛾+𝑖𝐿𝛽⋅𝑦−𝑖 𝐵

4 |𝑦|2 {Δ𝑦𝑣 − 𝑖𝐵 (𝑑
2

𝑣 + Λ𝑣) − 𝐿2 (|𝛽|2 + |𝑋|2) 𝑣

+2𝑖𝐿𝛽 ⋅ ∇𝑣 + (𝐿𝐵𝛽 − 2𝐿3𝑋) ⋅ 𝑦𝑣 + (−𝐵2

4
− 𝐿4) |𝑦|2𝑣} ,

(IV-3.9)

163



Part IV, Chapter IV-3 – Modulation of solutions as a theoretical tool

where we denoted Λ𝑣 ∶= 𝑦 ⋅ ∇𝑣. We now differentiate 𝑢 with respect to time 𝑡:

𝜕𝑡𝑢 = 𝜕𝑡 (𝑒𝑖𝛾+𝑖𝛽⋅(𝑥−𝑋)−𝑖 𝐵
4𝐿2 |𝑥−𝑋|2 𝐴

𝐿
𝑣(𝑠, 𝑦))

= 𝑒𝑖𝛾+𝑖𝛽⋅(𝑥−𝑋)−𝑖 𝐵
4𝐿2 |𝑥−𝑋|2 𝐴

𝐿
[𝜕𝑡𝑣 + 𝐴𝑡

𝐴
𝑣 − 𝐿𝑡

𝐿
(𝑣 + Λ𝑣) − 𝑋𝑡

𝐿
⋅ ∇𝑣]

+ 𝑖𝑢
⎡
⎢⎢
⎣

𝛾𝑡 + 𝛽𝑡 ⋅ (𝑥 − 𝑋) − 𝛽 ⋅ 𝑋𝑡 − 𝐵𝑡
4𝐿2 |𝑥 − 𝑋|2

+ 2𝐿𝑡𝐵
4𝐿3 |𝑥 − 𝑋(𝑡)|2 + 2𝐵

4𝐿2 (𝑥 − 𝑋) ⋅ 𝑋𝑡

⎤
⎥⎥
⎦

= 𝑒𝑖𝛾+𝑖𝛽⋅(𝑥−𝑋)−𝑖 𝐵
4𝐿2 |𝑥−𝑋|2 𝐴

𝐿3 [𝜕𝑠𝑣 + 𝐴𝑠
𝐴

𝑣 − 𝐿𝑠
𝐿

(𝑣 + Λ𝑣) − 𝑋𝑠
𝐿

⋅ ∇𝑣]

+ 1
𝐿2 𝑖𝑢 [𝛾𝑠 + 𝐿𝛽𝑠 ⋅ 𝑦 − 𝛽 ⋅ 𝑋𝑠 − 𝐵𝑠

4
|𝑦|2 + 2𝐿𝑠𝐵

4𝐿
|𝑦|2 + 𝐵

2
𝑦 ⋅ 𝑋𝑠

𝐿
] ,

where we recall that the subscripts 𝑡 or 𝑠 denote a time-differentiation with respect to
time 𝑡 or time 𝑠. Hence,

𝑖𝜕𝑡𝑢 = 𝑒𝑖𝛾+𝑖𝛽⋅(𝑥−𝑋)−𝑖 𝐵
4𝐿2 |𝑥−𝑋|2 𝐴

𝐿3

⎡
⎢
⎢
⎢
⎢
⎣

𝑖𝜕𝑠𝑣 + (−𝛾𝑠 + 𝛽 ⋅ 𝑋𝑠)𝑣 + (𝐴𝑠
𝐴

− 𝐿𝑠
𝐿

) 𝑖𝑣

− 𝐿𝑠
𝐿

𝑖Λ𝑣 − 𝑖𝑋𝑠
𝐿

⋅ ∇𝑣

+ (−𝐿𝛽𝑠 − 𝐵𝑋𝑠
2𝐿

) ⋅ 𝑦𝑣 + (𝐵𝑠
4

− 𝐵
2

𝐿𝑠
𝐿

) |𝑦|2𝑣

⎤
⎥
⎥
⎥
⎥
⎦

.

(IV-3.10)
This yields

(𝑖𝜕𝑡𝑢 + Δ𝑥𝑢 − |𝑥|2𝑢)(𝑡, 𝑥)

= 𝐴
𝐿3 𝑒𝑖𝛾+𝑖𝐿𝛽⋅𝑦−𝑖 𝐵

4 |𝑦|2

×

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑖𝜕𝑠𝑣 + (−𝛾𝑠 + 𝛽 ⋅ 𝑋𝑠 − 𝐿2 (|𝛽|2 + |𝑋|2)) 𝑣

+ (𝐴𝑠
𝐴

− 𝐿𝑠
𝐿

− 𝐵𝑑
2

) 𝑖𝑣 + (−𝐿𝑠
𝐿

− 𝐵) 𝑖Λ𝑣

+ 𝑖 (2𝐿𝛽 − 𝑋𝑠
𝐿

) ⋅ ∇𝑣

+ (−2𝐿3𝑋 + 𝐿𝐵𝛽 − 𝐿𝛽𝑠 − 𝐵
2

𝑋𝑠
𝐿

) ⋅ 𝑦𝑣

+ Δ𝑦𝑣 + [𝐵𝑠
4

− (𝐵2

4
+ 𝐿4) − 𝐵

2
𝐿𝑠
𝐿

] |𝑦|2𝑣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(𝑠, 𝑦). (IV-3.11)

Once we have Equation (IV-3.11), we are free to choose the parameters as we wish,
Until now, the parameters have been completely free, with no condition whatsoever on
them or their time derivatives. The main idea is to now choose conditions on them so that
(IV-3.11) becomes an equation on 𝑣 in variables (𝑠, 𝑦) that is “easy” to solve. A natural
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choice is to conjugate the equation back to the original one in variables (𝑠, 𝑦), i.e. to take

𝛾𝑠 − 𝛽 ⋅ 𝑋𝑠 + 𝐿2 (|𝛽|2 + |𝑋|2) = 0, 2𝐿𝛽 − 𝑋𝑠
𝐿

= 0,

𝐴𝑠
𝐴

− 𝐿𝑠
𝐿

− 𝐵
2

𝑑 = 0, − 2𝐿3𝑋 + 𝐿𝐵𝛽 − 𝐿𝛽𝑠 − 𝐵𝑋𝑠
2𝐿

= 0,

− 𝐿𝑠
𝐿

− 𝐵 = 0, 𝐵𝑠
4

− (𝐵2

4
+ 𝐿4) − 𝐵

2
𝐿𝑠
𝐿

= −1,

(IV-3.12)

so that 𝑣 itself has to solve (HO) in variables (𝑠, 𝑦). Then (IV-3.11) gives us the following
equivalence:

(𝑖𝜕𝑡 + Δ𝑥 − |𝑥|2)𝑢(𝑡, 𝑥) = 0 ⟺ (𝑖𝜕𝑠 + Δ𝑦 − |𝑦|2)𝑣(𝑠, 𝑦) = 0. (IV-3.13)

The equivalence is straightforward if we assume (IV-3.12) to be satisfied. Now we see that
if 𝑣 is decomposed into the Hermite basis, we can solve explicitly (HO) for the function
𝑣 in variables (𝑠, 𝑦), and obtain the solution 𝑢(𝑡, 𝑥) after solving the differential system
(IV-3.12).

Any function satisfying equation (IV-3.13) in variables (𝑠, 𝑦) can be decomposed in
the Hermite basis

{𝜑𝑛(𝑦) ∶= 𝐻𝑛1
(𝑦1) ⋯ 𝐻𝑛𝑑

(𝑦𝑑) ∶ 𝑛 ∈ ℕ𝑑} ,

where the function 𝐻𝑘(𝑧) denotes the Hermite function of order 𝑘 ∈ ℕ, which satisfies
the following diffferential equation:

𝐻″
𝑘 (𝑧) + (2𝑘 + 1 − 𝑧2)𝐻𝑘(𝑧) = 0, 𝑧 ∈ ℝ.

A straightforward calculation shows that

(−Δ𝑦 + |𝑦|2)𝜑𝑛 = (2|𝑛| + 𝑑)𝜑𝑛,

where |𝑛| ∶= ∑𝑑
𝑘=1 𝑛𝑘. Hence from a decomposition

𝑣(0, 𝑦) = ∑
𝑛∈ℕ𝑑

𝑣𝑛𝜑𝑛(𝑦) (IV-3.14)

with 𝑣𝑛 ∈ ℂ, we calculate that

𝑣(𝑠, 𝑦) = ∑
𝑛∈ℕ𝑑

𝑣𝑛𝑒−(2|𝑛|+𝑑)𝑖𝑠𝜑𝑛(𝑦) (IV-3.15)

is the solution of (IV-3.13) in variables (𝑠, 𝑦). It remains to obtain 𝑢(𝑡, 𝑥) solution of (HO).
In order to do this, one simply needs to integrate (IV-3.12) (which is independent of 𝑛 in
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the Hermite decomposition), and to plug (IV-3.15) into (IV-3.6). In particular, we need
to calculate the time 𝑠(𝑡) as a function of the original time 𝑡.

IV-3.1.3 Integrability of the modulation equations

Our aim here is to show that the ordinary differential system (IV-3.12) can be inte-
grated exactly with explicit formulas for the parameters. We rewrite (IV-3.12) as

𝐴𝑠 = 𝐴𝐵
2

(𝑑 − 2), 𝐿𝑠 = −𝐵𝐿

𝐵𝑠 = −4 + 4𝐿4 − 𝐵2, 𝑋𝑠 = 2𝐿2𝛽

𝛽𝑠 = −2𝐿2𝑋, 𝛾𝑠 = 𝐿2 (|𝛽|2 − |𝑋|2) .

(IV-3.16)

In time 𝑡, as d
d𝑠 = 𝐿2 d

d𝑡 , this system is

𝐴𝑡 = 𝐴𝐵
2𝐿2 (𝑑 − 2), 𝐿𝑡 = −𝐵

𝐿
= −2𝐿𝜕𝐵ℰ

𝐵𝑡 = − 4
𝐿2 + 4𝐿2 − 𝐵2

𝐿2 = 2𝐿𝜕𝐿ℰ, 𝑋𝑡 = 2𝛽 = ∇𝛽ℛ

𝛽𝑡 = −2𝑋 = −∇𝑋ℛ, 𝛾𝑡 = |𝛽|2 − |𝑋|2,

(IV-3.17)

with
ℰ(𝐵, 𝐿) = 1

𝐿2 (1 + 𝐵2

4
) + 𝐿2, and ℛ(𝑋, 𝛽) = |𝑋|2 + |𝛽|2.

Let us write explicitly the Darboux-Lie transformation associated with the previous
Poisson system (see e.g. [40]), to obtain canonical Hamiltonian coordinates. We set

𝑘 = 1
2

log 𝐿, 𝐿 = 𝑒2𝑘,

and the system becomes
∣
∣
∣
∣
∣
∣
∣
∣
∣

𝑘𝑡 = −𝜕𝐵ℋ

𝐵𝑡 = 𝜕𝑘ℋ

𝑋𝑡 = ∇𝛽ℋ

𝛽𝑡 = −∇𝑋ℋ

𝐴𝑡 = 𝐴𝐵
2

(𝑑 − 2)𝑒−4𝑘

𝛾𝑡 = |𝛽|2 − |𝑋|2,

(IV-3.18)

with

ℋ(𝑘, 𝐵, 𝑋, 𝛽) = ℰ(𝑘, 𝐵) + ℛ(𝑋, 𝛽) = 𝑒−4𝑘 (𝐵2

4
+ 1) + 𝑒4𝑘 + |𝑋|2 + |𝛽|2.
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Lemma IV.3: Action-angle variables and exact update formulas

There exists a symplectic change of variable (𝑋, 𝐵, 𝑘, 𝛽) ↦ (ℎ, 𝑎, 𝜉, 𝜃) ∈ ℝ × ℝ𝑑 ×
[0, 2𝜋] × [0, 2𝜋]𝑑, such that the Hamiltonian in these variables is given by

𝐸(ℎ, 𝑎, 𝜉, 𝜃) = 4ℎ + 2|𝑎|2, (IV-3.19)

so that the flow in variable (ℎ, 𝑎, 𝜉, 𝜃) is given by

𝑎(𝑡) = 𝑎(0), 𝜃(𝑡) = 𝜃(0) + 2𝑡,

ℎ(𝑡) = ℎ(0), 𝜉(𝑡) = 𝜉(0) − 4𝑡.
(IV-3.20)

We have the explicit formulas:

𝐴(𝑡) = 𝐴(0) ( 𝐿(𝑡)
𝐿(0)

)
2−𝑑

2

,

𝑒4𝑘(𝑡) = 𝐿(𝑡)2 = 2ℎ(𝑡) − cos(𝜉(𝑡))√4ℎ(𝑡)2 − 1,

𝐵(𝑡) = 2 sin(𝜉(𝑡))√4ℎ(𝑡)2 − 1,

𝑋𝑖(𝑡) = sin(𝜃𝑖(𝑡))√2𝑎𝑖(𝑡), 𝑖 = 1, … , 𝑑,

𝛽𝑖(𝑡) = cos(𝜃𝑖(𝑡))√2𝑎𝑖(𝑡), 𝑖 = 1, … , 𝑑,

𝛾(𝑡) = 𝛾(0) +
𝑑

∑
𝑙=1

𝑎𝑙(0)
2

[sin(2𝜃𝑙(𝑡)) − sin(2𝜃𝑙(0))]

𝑠(𝑡) = −1
2

arctan ((2ℎ(0) + √4ℎ(0)2 − 1) tan (𝜉(0)
2

− 2𝑡))

+ 1
2

arctan ((2ℎ(0) + √4ℎ(0)2 − 1) tan (𝜉(0)
2

)) + 𝑚𝑡
𝜋
2

,

(IV-3.21)

where, if 𝑚0 ∈ ℤ is such that 𝜉(0)
2 ∈ 𝑚0𝜋 + [−𝜋

2 , 𝜋
2 ], then 𝑚𝑡 ∈ ℤ is defined by

𝜉(𝑡)
2 ∈ (𝑚0 − 𝑚𝑡)𝜋 + [−𝜋

2 , 𝜋
2 ].

Proof. The proof of this Lemma consists in using action-angle variables, and then using
explicit integrals in order to obtain the exact update formulas. The proof ends on page
174.

For the (𝑋, 𝛽) part, it suffices to check that the change of variable (𝑋, 𝛽) ↦ (𝑎, 𝜃)
defined by

𝑋𝑖 = √2𝑎𝑖 sin(𝜃𝑖) and 𝛽𝑖 = √2𝑎𝑖 cos(𝜃𝑖) 𝑖 = 1, … , 𝑑,

167



Part IV, Chapter IV-3 – Modulation of solutions as a theoretical tool

is symplectic and that

𝑋𝑖 = √2𝑎𝑖(0) sin(2𝑡 + 𝜃𝑖(0)) and 𝛽𝑖 = √2𝑎𝑖(0) cos(2𝑡 + 𝜃𝑖(0)) 𝑖 = 1, … , 𝑑,

are solutions. Thus,

𝑎𝑖(𝑡) = 𝑎𝑖(0) and 𝜃𝑖(𝑡) = 𝜃𝑖(0) + 2𝑡. (IV-3.22)

For the (𝑘, 𝐵) part we use the method of generating functions, described e.g. in [40,
Sect. VI.5]. We can express 𝐵 in terms of 𝑘 and the Hamiltonian ℰ, so that on the set
{𝐵 > 0} we have:

𝐵 = 2
√

𝑒4𝑘ℰ − 𝑒8𝑘 − 1. (IV-3.23)

This equality holds for 𝑒4𝑘 ∈ [𝑒4𝑘0 , 𝑒4𝑘1 ], where 𝑒4𝑘0 , 𝑒4𝑘1 are the reals roots of the poly-
nomial −𝑧2 + ℰ𝑧 − 1,

𝑒4𝑘0 = 1
2

(ℰ −
√

ℰ2 − 4) , 𝑒4𝑘1 = 1
2

(ℰ +
√

ℰ2 − 4) . (IV-3.24)

In order to obtain a symplectic change of variables, we look for a function 𝑆(𝑘, ℰ) such
that

𝐵 = 𝜕𝑆
𝜕𝑘

(𝑘, ℰ).

We easily obtain 𝑆(𝑘, ℰ), by integrating on [𝑘0, 𝑘]:

𝑆(𝑘, ℰ) = 2 ∫
𝑘

𝑘0

√
𝑒4𝑧ℰ − 𝑒8𝑧 − 1𝑑𝑧.

The variable 𝜙 which makes the mapping (𝐵, 𝑘) ↦ (𝜙, ℰ) symplectic is defined by

𝜙 = 𝜕𝑆
𝜕ℰ

(𝑘, ℰ) = ∫
𝑘

𝑘0

𝑒4𝑧
√

𝑒4𝑧ℰ − 𝑒8𝑧 − 1
𝑑𝑧.

We have

d𝜙
d𝑡

= 𝑒4𝑘𝑘𝑡√
𝑒4𝑘 − 𝑒8𝑘 − 1

= −𝑒4𝑘𝜕𝐵ℰ
𝐵
2

=
−𝑒−4𝑘 𝐵

2 𝑒4𝑘

𝐵
2

= −1.
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We now proceed to obtaining an explicit expression for 𝜓:

𝜙 = ∫
𝑘

𝑘0

𝑒4𝑧
√

𝑒4𝑧ℰ − 𝑒8𝑧 − 1
𝑑𝑧 = 1

4
∫

𝑒4𝑘

𝑒4𝑘0

1√
ℰ𝑢 − 𝑢2 − 1

𝑑𝑢

= 1

4√ℰ2

4 − 1
∫

𝑒4𝑘

𝑒4𝑘0

1
√√√

⎷
1 − ( 𝑢− ℰ

2

√ ℰ2
4 −1

)
2
𝑑𝑢

= 1
4

∫

𝑒4𝑘− ℰ
2

√ ℰ2
4 −1

𝑒4𝑘0− ℰ
2

√ ℰ2
4 −1

1√
1 − 𝑢2

𝑑𝑢.

Recall the definition (IV-3.24) of 𝑘0, which yields

𝑒4𝑘0 − ℰ
2

= −√ℰ2

4
− 1.

Therefore,

𝜙 = 1
4

∫
𝑒4𝑘− ℰ

2
√ ℰ2

4 −1

−1

1√
1 − 𝑢2

𝑑𝑢 = 1
4

⎛⎜⎜
⎝

arcsin ⎛⎜⎜
⎝

𝑒4𝑘 − ℰ
2

√ℰ2

4 − 1
⎞⎟⎟
⎠

+ 𝜋
2

⎞⎟⎟
⎠

= 1
4

arcsin ⎛⎜⎜
⎝

𝑒4𝑘 − ℰ
2

√ℰ2

4 − 1
⎞⎟⎟
⎠

+ 𝜋
8

∈ [0, 𝜋
4

] .

We want the angle variable to lie in [0, 2𝜋] so the above expression describes an eighth
of a period. But we are only considering the set {𝐵 > 0}, thus the angle 𝜉 we are
looking for must lie only in [0, 𝜋]. Hence we set (𝜉, ℎ) = (4𝜙, ℰ/4) and let the Hamiltonian
ℰ(𝜉, ℎ) = 4ℎ with a slight abuse of notation. It is then clear that dℎ

d𝑡 = 0 and d𝜉
d𝑡 = −4.

Moreover,

𝜉 = arcsin ⎛⎜⎜
⎝

𝑒4𝑘 − ℰ
2

√ℰ2

4 − 1
⎞⎟⎟
⎠

+ 𝜋
2

∈ [0, 𝜋] , (IV-3.25)

and hence
𝑒4𝑘 − ℰ

2

√ℰ2

4 − 1
= sin (𝜉 − 𝜋

2
) = − cos (𝜉) .
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We obtain

𝑒4𝑘 = 𝐿2 = ℰ
2

− cos(𝜉)√ℰ2

4
− 1 = 2ℎ − cos(𝜉)

√
4ℎ2 − 1

= 2ℎ (1 − cos(𝜉)√1 − 1
4ℎ2 ) .

With this formula, we have

0 < 𝐿2 < 4ℎ = ℰ,

and (IV-3.23) becomes

𝐵 = 2
√

ℰ𝑒4𝑘 − 𝑒8𝑘 − 1 = 2√4ℎ𝑒4𝑘 − (𝑒4𝑘)2 − 1 = 2√(4ℎ2 − 1) sin2(𝜉)

= 2 sin(𝜉)
√

4ℎ2 − 1,

where the last equality holds for 𝜉 ∈ [0, 𝜋].

We can now integrate the equations for 𝐴, and 𝛾. The first one is

𝐴𝑡 = 𝐴𝐵
2

(𝑑 − 2)𝑒−4𝑘.

From the expressions we just obtained we get

𝐴𝑡 = 𝐴(𝑑 − 2) sin(𝜉)
√

4ℎ2 − 1
2ℎ − cos(𝜉)

√
4ℎ2 − 1

.

The solution to this equation is of the form

𝐴(𝑡) = 𝐴(0) exp {(𝑑 − 2) ∫
𝑡

0

sin(𝜉(𝜎))√4ℎ(𝜎)2 − 1
2ℎ(𝜎) − cos(𝜉(𝜎))√4ℎ(𝜎)2 − 1

d𝜎} .

Moreover, we know that 𝜎 ↦ ℎ(𝜎) is constant, and that 𝜉(𝜎) = 𝜉(0) − 4𝜎. Hence we have
to solve

𝐴(𝑡) = 𝐴(0) exp {(𝑑 − 2) ∫
𝑡

0

sin(𝜉(0) − 4𝜎)√4ℎ(0)2 − 1
2ℎ(0) − cos(𝜉(0) − 4𝜎)√4ℎ(0)2 − 1

d𝜎} .
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One can easily check that we have the following equality:

∫
𝑡

0

sin(𝜉(0) − 4𝜎)√4ℎ(0)2 − 1
2ℎ(0) − cos(𝜉(0) − 4𝜎)√4ℎ(0)2 − 1

d𝜎

= −1
4

[log (2ℎ(𝑡) − cos(𝜉(𝑡))√4ℎ(𝑡)2 − 1) − log (2ℎ(0) − cos(𝜉(0))√4ℎ(0)2 − 1)] .

Note that, unless ℎ(0) = 1
2 or ℎ(𝑡) = 1

2 , these quantities are well-defined since 2ℎ(𝜎) >
√4ℎ(𝜎)2 − 1, 𝜎 ∈ {0, 𝑡}. Thus, we obtain

𝐴(𝑡) = 𝐴(0)𝑒
2−𝑑

4 [log(2ℎ(𝑡)−cos(𝜉(𝑡))√4ℎ(𝑡)2−1)−log(2ℎ(0)−cos(𝜉(0))√4ℎ(0)2−1)]

= 𝐶 (2ℎ(0) − cos(𝜉(0) − 4𝑡)√4ℎ(0)2 − 1)
2−𝑑

4 ,

where we defined 𝐶 ∶= 𝐴(0) (2ℎ(0) − cos(𝜉(0))√4ℎ(0)2 − 1)
𝑑−2

4 . We recognize here the
expressions for 𝐿(0)2 and 𝐿(𝑡)2.

Let us finally turn to the expression for 𝛾(𝑡). We proceed to the direct integration of
𝛾𝑡. We have

𝛾(𝑡) − 𝛾(0) = ∫
𝑡

0
̇𝛾(𝜏)𝑑𝜏 = ∫

𝑡

0
[|𝛽(𝜏)|2 − |𝑋(𝜏)|2] 𝑑𝜏

= ∫
𝑡

0
{

𝑑
∑
𝑙=1

2𝑎𝑙 cos(𝜃𝑙(𝜏))2 −
𝑑

∑
𝑙=1

2𝑎𝑙 sin(𝜃𝑙(𝜏))2} 𝑑𝜏

= ∫
𝑡

0
2

𝑑
∑
𝑙=1

𝑎𝑙 (cos(𝜃𝑙(𝜏))2 − sin(𝜃𝑙(𝜏))2) 𝑑𝜏

= ∫
𝑡

0

𝑑
∑
𝑙=1

2𝑎𝑙 cos(2𝜃𝑙(𝜏))𝑑𝜏

=
𝑑

∑
𝑙=1

𝑎𝑙
2

[sin(2𝜃𝑙(𝑡)) − sin(2𝜃𝑙(0))] ,

where the last equality has been obtained using (IV-3.22).

Finally, we calculate the evolution of the time 𝑠(𝑡) in term of the original time 𝑡. Owing
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to the expression of 𝐿(𝑡) we obtained earlier,

𝑠(𝑡) ∶= ∫
𝑡

0

1
𝐿(𝜏)2 𝑑𝑡 = ∫

𝑡

0

1
2ℎ(0)⏟

=∶𝑐1

− √4ℎ(0)2 − 1⏟⏟⏟⏟⏟
=∶𝑐2

cos(𝜉(0) − 4𝜏)
𝑑𝜏

= ∫
𝑡

0

1
𝑐1 − 𝑐2 cos(𝜉(0) − 4𝜏)

𝑑𝜏

= 1
4

∫
𝜉(0)

𝜉(0)−4𝑡

1
𝑐1 − 𝑐2 cos(𝜏)

𝑑𝜏.

Recall the following trigonometric identity:

cos(2𝜏) = 1 − tan(𝜏)2

1 + tan(𝜏)2 , 𝜏 ∈ ℝ,

hence

∫
𝑡

0

1
𝑐1 − 𝑐2 cos(𝜉(0) − 4𝜏)

𝑑𝜏

= 1
4

∫
𝜉(0)

𝜉(0)−4𝑡

1
𝑐1 − 𝑐2

1−tan(𝜏/2)2

1+tan(𝜏/2)2

𝑑𝜏

= 1
4

∫
𝜉(0)

𝜉(0)−4𝑡

1 + tan(𝜏/2)2

𝑐1(1 + tan(𝜏/2)2) − 𝑐2(1 − tan(𝜏/2)2)
𝑑𝜏

= 1
4

∫
𝜉(0)

𝜉(0)−4𝑡

1 + tan(𝜏/2)2

(𝑐1 + 𝑐2) tan(𝜏/2)2 + 𝑐1 − 𝑐2
𝑑𝜏

= 1
4(𝑐1 − 𝑐2)

∫
𝜉(0)

𝜉(0)−4𝑡

1 + tan(𝜏/2)2

𝑐1+𝑐2
𝑐1−𝑐2

tan(𝜏/2)2 + 1
𝑑𝜏

= 1
2(𝑐1 − 𝑐2)

∫
𝜉(0)

2

𝜉(0)
2 −2𝑡

1 + tan(𝜏)2

𝑐1+𝑐2
𝑐1−𝑐2

tan(𝜏)2 + 1
𝑑𝜏

= 1
2(𝑐1 − 𝑐2)

∫
𝜉(0)

2

𝜉(0)
2 −2𝑡

𝑑
𝑑𝜏(tan(𝜏))

𝑐1+𝑐2
𝑐1−𝑐2

tan(𝜏)2 + 1
𝑑𝜏

= 1
2(𝑐1 − 𝑐2)

1

√𝑐1+𝑐2
𝑐1−𝑐2

∫
𝜉(0)

2

𝜉(0)
2 −2𝑡

𝑑
𝑑𝜏 (√𝑐1+𝑐2

𝑐1−𝑐2
tan(𝜏))

[√𝑐1+𝑐2
𝑐1−𝑐2

tan(𝜏)]
2

+ 1
𝑑𝜏.

Moreover, (𝑐1 − 𝑐2)(𝑐1 + 𝑐2) = 𝑐2
1 − 𝑐2

2 = (2ℎ)2 − (4ℎ2 − 1) = 1 and 𝑐1 − 𝑐2 > 0, thus
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√𝑐1+𝑐2
𝑐1−𝑐2

= (𝑐1 + 𝑐2) and

∫
𝑡

0

1
𝐿(𝜏)2 𝑑𝜏 = 1

2
∫

𝜉(0)
2

𝜉(0)
2 −2𝑡

𝑑
𝑑𝜏 ((𝑐1 + 𝑐2) tan(𝜏))

((𝑐1 + 𝑐2) tan(𝜏))2 + 1
𝑑𝜏.

Now let 𝑚0 ∈ ℤ such that 𝜉(0)
2 ∈ 𝑚0𝜋 + (−𝜋

2 , 𝜋
2 ], and 𝑚𝑡 ∈ ℤ such that 𝜉(𝑡)

2 ∈ (𝑚0 −
𝑚𝑡)𝜋 + (−𝜋

2 , 𝜋
2 ]. We recall that 𝜉(𝑡) = 𝜉(0) − 4𝑡. Then

∫
𝑡

0

1
𝐿(𝜏)2 𝑑𝜏 = 1

2
∫

𝜉(0)
2

𝜉(0)
2 −2𝑡

𝑑
𝑑𝜏 ((𝑐1 + 𝑐2) tan(𝜏))

((𝑐1 + 𝑐2) tan(𝜏))2 + 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=∶𝑓(𝜏)

𝑑𝜏

= 1
2

∫
𝜉(0)

2

𝑚0𝜋− 𝜋
2

𝑓(𝜏)𝑑𝜏 + 1
2

∫
𝑚0𝜋− 𝜋

2

(𝑚0−1)𝜋− 𝜋
2

𝑓(𝜏)𝑑𝜏 + ⋯ + 1
2

∫
(𝑚0−𝑚𝑡)𝜋+ 𝜋

2

𝜉(0)
2 −2𝑡

𝑓(𝜏)𝑑𝜏.

For 𝑚 ∈ ℤ, we have

∫
𝑚𝜋+ 𝜋

2

𝑚𝜋− 𝜋
2

𝑓(𝜏)𝑑𝜏 = [arctan ((𝑐1 + 𝑐2) tan(𝜏))]𝑚𝜋+ 𝜋
2

𝑚𝜋− 𝜋
2

= [arctan ((𝑐1 + 𝑐2) tan(𝜏))]
𝜋
2
− 𝜋

2
= 𝜋.
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Now write �̃�(0)
2 ∶= 𝜉(0)

2 − 𝑚0𝜋 ∈ (−𝜋
2 , 𝜋

2 ], and 𝜉(𝜏)
2 ∶= 𝜉(𝜏)

2 − (𝑚0 − 𝑚𝑡)𝜋 ∈ (−𝜋
2 , 𝜋

2 ]. Then,

∫
𝑡

0

1
𝐿(𝜏)2 𝑑𝜏

= 1
2

(𝑚𝑡 − 1)𝜋 + 1
2

∫
𝜉(0)

2

𝑚0𝜋− 𝜋
2

𝑓(𝜏)𝑑𝜏 + 1
2

∫
(𝑚0−𝑚𝑡)𝜋+ 𝜋

2

𝜉(0)
2 −2𝑡

𝑓(𝜏)𝑑𝜏

= (𝑚𝑡 − 1)𝜋
2

+ 1
2

∫
𝜉(0)

2

− 𝜋
2

𝑓(𝜏)𝑑𝜏 + 1
2

∫
𝜋
2

𝜉(𝑡)
2

𝑓(𝜏)𝑑𝜏

= (𝑚𝑡 − 1)𝜋
2

+ 1
2

[arctan ((𝑐1 + 𝑐2) tan(𝜏))]
𝜉(0)

2
− 𝜋

2
+ 1

2
[arctan ((𝑐1 + 𝑐2) tan(𝜏))]

𝜋
2
𝜉(𝑡)

2

= (𝑚𝑡 − 1)𝜋
2

+ 1
2

arctan ((𝑐1 + 𝑐2) tan (𝜉(0)
2

)) + 𝜋
2

+ 𝜋
2

− arctan ((𝑐1 + 𝑐2) tan (𝜉(𝑡)
2

))

= 𝑚𝑡
𝜋
2

+ 1
2

arctan ((𝑐1 + 𝑐2) tan (𝜉(0)
2

)) − 1
2

arctan ((𝑐1 + 𝑐2) tan (𝜉(𝑡)
2

))

= 𝑚𝑡
𝜋
2

+ 1
2

arctan ((𝑐1 + 𝑐2) tan (𝜉(0)
2

)) − 1
2

arctan ((𝑐1 + 𝑐2) tan (𝜉(0)
2

− 2𝑡)) .

Hence

𝑠(𝑡) = ∫
𝑡

0

1
𝐿(𝜏)2 𝑑𝜏 = −1

2
arctan ((𝑐1 + 𝑐2) tan (𝜉(0)

2
− 2𝑡))

+ 1
2

arctan ((𝑐1 + 𝑐2) tan (𝜉(0)
2

)) + 𝑚𝑡
𝜋
2

.

If one knows the parameters (𝐴, 𝐿, 𝐵, 𝑋, 𝛽, 𝛾), it suffices to apply (IV-3.21) in order
to update them. Then we combine these expressions with the decomposition (IV-3.15)
and the expression of 𝑠(𝑡) to obtain the expression of 𝑢(𝑡, 𝑥).

In practice, we first perform a bubble decomposition of the initial condition in order
to write it under the form (IV-3.1)-(IV-3.2). This gives the value of parameters at time
𝑡 = 0. Then, in order to update the modulation parameters using (IV-3.21), we first have
to compute the corresponding action-angle variables. We have the following result:
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Lemma IV.4: Action-angle variables from the parameters

The change of variables (𝐿, 𝐵, 𝑋, 𝛽) ↦ (ℎ, 𝑎, 𝜉, 𝜃) is explicit, and at time 𝑡 = 0 we
have

𝑎𝑖(0) = 1
2

(𝑋𝑖(0)2 + 𝛽𝑖(0)2) , 𝑖 = 1, … , 𝑑,

𝜃𝑖(0) = arctan (𝑋𝑖(0)
𝛽𝑖(0)

) , 𝑖 = 1, … , 𝑑,

ℎ(0) =
𝐿(0)4 + 1 + 𝐵(0)2

4
4𝐿(0)2 ,

𝜉(0) = arctan ( 𝐵(0)
4ℎ(0) − 2𝐿(0)2 ) ,

(IV-3.26)

whenever 𝜃𝑖(0) and 𝜉(0) are well-defined. When any one of them is ill-defined – which
happens when 𝑋𝑖(0) = 𝛽𝑖(0) = 0, 𝑖 ∈ {1, … , 𝑑} or when 𝐿(0) = 1 and 𝐵(0) = 0 –
any value can be taken and the time-evolution of 𝐴(𝑡), 𝐿(𝑡), 𝐵(𝑡), 𝑋(𝑡), 𝛽(𝑡) and 𝛾(𝑡)
will not depend on the value. Moreover, in the cases where 𝑎𝑖(0) = 0, 𝑖 ∈ {1, … , 𝑑}
or ℎ(0) = 1

2 , the formula (IV-3.26) for 𝜃𝑖(0), 𝑖 ∈ {1, … , 𝑑} or 𝜉(0) are ill-defined, but
any value can be taken as a substitution and this will not affect the behavior of the
mappings 𝑡 ↦ 𝛾(𝑡) and 𝑡 ↦ 𝑠(𝑡).

Proof. The proof of this Lemma consists in inverting the expressions (IV-3.21) using
algebraic manipulations. The proof ends on page 177.

We have 𝑎𝑖(0) = 1
2 (𝑋𝑖(0)2 + 𝛽𝑖(0)2) , 𝑖 = 1, … , 𝑑. If 𝑎𝑖(0) > 0 we can define 𝜃𝑖(0) as

𝜃𝑖(0) = arctan (𝑋𝑖(0)
𝛽𝑖(0) ). Otherwise, if 𝑎𝑖(0) = 0, then we recall that 𝑎(𝑡) = 𝑎(0) and hence

– whatever 𝜃(0) – we have 𝑋𝑖(𝑡) = 0 and 𝛽𝑖(𝑡) = 0. Therefore, in the case 𝑎𝑖(0) = 0, the
exact value of 𝜃𝑖(0) does not change the behavior of 𝑡 ↦ (𝑋𝑖(𝑡), 𝛽𝑖(𝑡)).

For the (𝐿, 𝐵) part,

𝐿(0)2 − 2ℎ(0) = − cos(𝜉(0))√4ℎ(0)2 − 1,

hence

(𝐿(0)2 − 2ℎ(0))2 = 𝐿(0)4 − 4𝐿(0)2ℎ(0) + 4ℎ(0)2 = cos(𝜉(0))2 (4ℎ(0)2 − 1) .

We also have

(𝐵(0)
2

)
2

= 𝐵(0)2

4
= sin(𝜉(0))2 (4ℎ(0)2 − 1) .

Then,

𝐿(0)4 − 4𝐿(0)2ℎ(0) + 4ℎ(0)2 + 𝐵(0)2

4
= 4ℎ(0)2 − 1,
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that is
4𝐿(0)2ℎ(0) = 𝐿(0)4 + 𝐵(0)2

4
+ 1.

We deduce that ℎ(0), 𝐿(0) ≠ 0, and therefore

ℎ(0) =
𝐿(0)4 + 𝐵(0)2

4 + 1
4𝐿(0)2 .

Note that ℎ(0) is bounded from below by 1
2 . Indeed,

𝐿(0)4 − 2𝐿(0)2 + 1 + 𝐵(0)2

4
= (𝐿(0)2 − 1)2 + 𝐵(0)2

4
≥ 0

⟺ 𝐿(0)4 + 1 + 𝐵(0)2

4
≥ 2𝐿(0)2

⟺ ℎ(0) ≥ 1
2

.

From this we also get that ℎ(0) = 1
2 ⟺ 𝐿(0)2 = 1 and 𝐵(0) = 0.

If ℎ(0) > 1
2 , we have

⎧{
⎨{⎩

2ℎ(0) − 𝐿(0)2 = cos(𝜉(0))√4ℎ(0)2 − 1
𝐵(0)

2
= sin(𝜉(0))√4ℎ(0)2 − 1,

⟹ 𝐵(0)/2
2ℎ(0) − 𝐿(0)2 = tan(𝜉(0)),

hence
𝜉(0) = arctan ( 𝐵(0)/2

2ℎ(0) − 𝐿(0)2 ) .

Otherwise, in the case ℎ(0) = 1
2 , the value of 𝜉(0) is not rigourously defined. However,

as previously, the exact value of 𝜉(0) is not important because ℎ(𝑡) = ℎ(0) = 1
2 , which

means that 𝐿(𝑡)2 = 1 and 𝐵(𝑡) = 0. Therefore, in the case ℎ(0) = 1
2 , the mapping

𝑡 ↦ (𝐿(𝑡), 𝐵(𝑡)) does not depend on the value of 𝜉(0). Finally, since the mapping 𝑡 ↦ 𝐿(𝑡)
does not depend on 𝜉(0) in the case ℎ(0) = 1

2 , we also have that 𝑡 ↦ 𝐴(𝑡) does not depend
on the exact value of 𝜉(0), thanks to the expression of 𝐴(𝑡) = 𝐴(0) (𝐿(𝑡)/𝐿(0))

2−𝑑
2 .

Finally, it remains to show that if 𝑎𝑖(0) = 0, 𝑖 ∈ {1, … , 𝑑} or ℎ(0) = 1
2 , then the

behavior of the mappings 𝑡 ↦ 𝛾(𝑡) and 𝑡 ↦ 𝑠(𝑡) do not depend on the exact value of
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𝜃𝑖(0), 𝑖 ∈ {1, … , 𝑑} or 𝜉(0). The exact formulae for 𝛾(𝑡) and 𝑠(𝑡) are:

𝛾(𝑡) = 𝛾(0) +
𝑑

∑
𝑙=1

𝑎𝑙(0)
2

[sin(2𝜃𝑙(𝑡)) − sin(2𝜃𝑙(0))]

𝑠(𝑡) = 1
2

arctan ((2ℎ(0) + √4ℎ(0)2 − 1) tan (𝜉(0)
2

− 2𝑡))

− 1
2

arctan ((2ℎ(0) + √4ℎ(0)2 − 1) tan (𝜉(0)
2

)) − 𝑚𝑡
𝜋
2

.

It is clear that if 𝑎𝑖(0) = 0 then 𝛾(𝑡) does not depend on 𝜃𝑖(0) nor 𝜃𝑖(𝑡), 𝑖 ∈ {1, … , 𝑑}. If
ℎ(0) = 1

2 , then
2ℎ(0) + √4ℎ(0)2 − 1 = 1,

so that

1
2

arctan ((2ℎ(0) + √4ℎ(0)2 − 1) tan (𝜉(0)
2

− 2𝑡))

− 1
2

arctan ((2ℎ(0) + √4ℎ(0)2 − 1) tan (𝜉(0)
2

)) − 𝑚𝑡
𝜋
2

= 1
2

arctan (tan (𝜉(𝑡)
2

)) − 1
2

arctan (tan (𝜉(0)
2

)) − 𝑚𝑡
𝜋
2

.

Since arctan ∶ ℝ ↦ (−𝜋
2 , 𝜋

2 ], we write �̃�(0)
2 ∶= 𝜉(0)

2 − 𝑚0𝜋 ∈ (−𝜋
2 , 𝜋

2 ], and 𝜉(𝜏)
2 ∶= 𝜉(𝜏)

2 −
(𝑚0 − 𝑚𝑡)𝜋 ∈ (−𝜋

2 , 𝜋
2 ]. Then we have

1
2

arctan (tan (𝜉(𝑡)
2

)) − 1
2

arctan (tan (𝜉(0)
2

)) − 𝑚𝑡
𝜋
2

= 1
2

𝜉(𝑡)
2

− 1
2

�̃�(0)
2

− 𝑚𝑡
𝜋
2

= 1
2

𝜉(𝑡)
2

− (𝑚0 − 𝑚𝑡)
𝜋
2

− 1
2

(𝜉(0)
2

− 𝑚0𝜋) − 𝑚𝑡
𝜋
2

= 1
2

(𝜉(𝑡)
2

− 𝜉(0)
2

) = −𝑡.

This shows that, in the case ℎ(0) = 1
2 , the mapping 𝑡 ↦ 𝛾(𝑡) does not depend on the

value chosen for the ill-defined quantity 𝜉(0).

Note that, in order to define 𝜉(0), we could also use the expression (IV-3.25) obtained
from the proof of Lemma IV.3:

𝜉 = arcsin ⎛⎜⎜
⎝

𝑒4𝑘 − ℰ
2

√ℰ2

4 − 1
⎞⎟⎟
⎠

+ 𝜋
2

∈ [0, 𝜋] ,
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However this is not appropriate from a computational point of view, some more details
about this are given in Remark IV.4.

Using Lemmata IV.3 and IV.4, we are now able to obtain a straightforward numerical
algorithm which simulates exactly the evolution of bubbles according to the harmonic
oscillator on a time interval [0, 𝑇 ]. It is described in Algorithm 2.

Algorithm 2 Solving the harmonic oscillator with Bubbles
Input:
— The bubble discretization of (IV-3.1), which gives the functions 𝑢𝑗.
— For each function 𝑢𝑗, its modulation parameters (𝐴𝑗, 𝐵𝑗, 𝐿𝑗, 𝛽𝑗, 𝑋𝑗, 𝛾𝑗).
for 𝑗 = 1, … , 𝑁 do ▷ 𝑗 denotes a bubble’s index

Use (IV-3.26) to get the action-angle variables (ℎ, 𝑎, 𝜉, 𝜃) at time 0.
Use (IV-3.20) to update the variables (ℎ, 𝑎, 𝜉, 𝜃) up to time 𝑇.
Use (IV-3.21) to get the parameters of bubble 𝑢𝑗 at time 𝑇.

end for
Use (IV-3.15) to update the Hermite decomposition for each bubble.
Output:
— The bubbles 𝑢𝑗(𝑇 , ⋅) given by (IV-3.2), solution to (HO).

Remark IV.4: Numerical considerations

Here are a few remarks about Algorithm 2:
— When applying equation (IV-3.26) to obtain the action-angle variables from

the bubbles’ parameters, it is advised to use the function arctan2 (𝑦, 𝑥) in-
stead of arctan(𝑦/𝑥) because it allows to obtain an angle lying in (−𝜋, 𝜋] in-
stead of (−𝜋/2, 𝜋/2], by taking into account the signs of both 𝑥 and 𝑦. The
arctan2 (𝑦, 𝑥) function is defined as follows:

arctan2 (𝑦, 𝑥) ∶=

⎧
{{{{{{
⎨
{{{{{{
⎩

arctan(𝑦/𝑥) if 𝑥 > 0

arctan(𝑦/𝑥) + 𝜋 if 𝑥 < 0 and 𝑦 ≥ 0

arctan(𝑦/𝑥) − 𝜋 if 𝑥 < 0 and 𝑦 < 0
𝜋
2

if 𝑥 = 0 and 𝑦 > 0

− 𝜋
2

if 𝑥 = 0 and 𝑦 < 0

undefined if 𝑥 = 0 and 𝑦 = 0.

This is also the reason why we do not define 𝜉(0) by (IV-3.25). Moreover most
numerical implementations of arctan2 return a finite value for arctan2 (0, 0),
which avoids the manual tuning of a numerical threshold to know whether 𝑎𝑖(0)
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or ℎ(0) vanish numerically or not. We recall that in this case the exact value
returned does not impact the behavior of 𝑡 ↦ (𝐿(𝑡), 𝐵(𝑡), 𝑋(𝑡), 𝛽(𝑡), 𝛾(𝑡), 𝑠(𝑡)).

— The family {𝜑𝑛 = 𝐻𝑛1
⋯ 𝐻𝑛𝑑

∶ 𝑛 = (𝑛1, … , 𝑛𝑑) ∈ ℕ𝑑} is an orthonormal fam-
ily of 𝕃2(ℝ𝑑), hence the discretization of any initial condition is done by cal-
culating (or approximating) the Hermite coefficients of the functions 𝑣𝑗 in the
decomposition (IV-3.14).

— The algorithm yields an exact solution as soon as the initial data is a sum of
bubbles. If not, then the only error committed is the discretization error when
approximating the initial condition 𝜓(𝑡 = 0) by the ansatz (IV-3.1).

— This numerical algorithm does not need any discretization in time nor in space,
since the integration in time is performed exactly and the function in space is
known analytically.

— The solution obtained is the exact solution of (HO) (after the discretization of
𝜓(0, ⋅) into a sum of bubbles), defined on the whole space ℝ𝑑, and no numerical
boundary conditions are needed.

— If 𝑀 ≥ 1 Hermite modes are used in each dimension, then the computational
complexity is 𝒪(𝑁(𝑀𝑑 + 𝑑)).

IV-3.2 Numerical examples

In this section we will assess the efficiency of the bubble approach described by Algo-
rithm 2 against a spectral method, in the linear two-dimensional case.

IV-3.2.1 Grid-based spectral scheme of reference

We start by discussing the spectral method we shall use to compare with the results
of Algorithm 2. We refer to [34] for a general introduction to spectral methods for the
Schrödinger equation, and to [5] for grid-based schemes applied to the Gross-Pitaevskii
equation. See also Section IV-2 – Review of the Schrödinger equation.

We now present a method which can be understood as the application of [14] to a
simpler equation, namely the harmonic oscillator. We use a splitting method to simulate
the linear part (HO), and thanks to [13, 3] we have:

𝑒−𝑖𝑡(−Δ+|𝑥|2) = 𝑒− 1
2 tanh(𝑖𝑡)|𝑥|2𝑒1

2 sinh(2𝑖𝑡)Δ𝑥𝑒− 1
2 tanh(𝑖𝑡)|𝑥|2

= 𝑒− 𝑖
2 tan(𝑡)|𝑥|2𝑒 𝑖

2 sin(2𝑡)Δ𝑥𝑒− 𝑖
2 tan(𝑡)|𝑥|2 . (IV-3.27)

We can cite [45] which also presents a spectral method based on the Fourier transform
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with time splitting, however the above method is different in that (IV-3.27) is exact and
hence we do not have any time-splitting error.

The first and third exponentials on the RHS are straightforward to compute on a
grid. For the second one, we use a Fourier transform: 𝑒 𝑖

2 sin(2𝑡)Δ𝑥 is the propagator of the
following equation:

𝜕𝑡𝜓 = 𝑖 cos(2𝑡)Δ𝑥𝜓.

By using a Fourier transform, we get

𝜕𝑡ℱ(𝜓)(𝜉) = 𝑖 cos(2𝑡)ℱ (Δ𝑥𝜓) (𝜉) = −𝑖 cos(2𝑡)|𝜉|2ℱ (𝜓) (𝜉).

Hence,
ℱ(𝜓(𝑡, ⋅))(𝜉) = 𝑒− 𝑖

2 sin(2𝑡)|𝜉|2ℱ(𝜓(0, ⋅))(𝜉).

The RHS exponential is straightforward to compute in the Fourier space. Hence, an exact-
time spectral approximation of the solution to (HO) is given by Algorithm 3.

Algorithm 3 Spectral solver for (HO), with an exact time resolution for each splitting
step.

Input:
— Grid: a uniform discretization of a finite volume subset of ℝ𝑑

— the initial data 𝜓0.
Discretize the initial data 𝜓0 on Grid ⊂ ℝ𝑑, and let 𝜂 be this discretization.
for Each timestep of size Δ𝑡 do

for 𝑥 ∈ Grid do ▷ 𝑥 ∈ ℝ𝑑.
Multiply 𝜂(𝑥) by 𝑒− 𝑖

2 tan(Δ𝑡)|𝑥|2 .
end for
Apply a FFT to 𝜂. ▷ FFT: Fast Fourier Transform.
for 𝜉 ∈ Fourier Grid do ▷ 𝜉 ∈ ℝ𝑑.

Multiply ̂𝜂(𝜉) by 𝑒− 𝑖
2 sin(2Δ𝑡)|𝜉|2 .

end for
Apply an inverse FFT to ̂𝜂.
for 𝑥 ∈ Grid do

Multiply 𝜂(𝑥) by 𝑒− 𝑖
2 tan(Δ𝑡)|𝑥|2 .

end for
end for
Output:
— 𝜂 is an approximation on Grid of 𝜓(𝑇 , ⋅), where 𝜓 is the solution to (HO).

Of course, in pratical applications one is not able to define a grid over ℝ𝑑. Hence,
Algorithm 3 has to be modified by defining Grid as a discretization of a finite-volume
subset of ℝ𝑑, typically a product of intervals in each dimension. For all of our numerical
examples, this will [−15, 15] × [−15, 15], discretized using 𝑁𝑥 × 𝑁𝑦 points. In order to
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have an easily computable FFT, one has to use a spatial uniform grid, which then defines
the Fourier Grid. Special care has to be paid when choosing the number of points: if
there are Fourier frequencies in the solution 𝜓 larger than the Nyquist frequency, then
we will observe a phenomenon known as aliasing. This may not be problematic for the
harmonic oscillator (HO) depending on the initial condition, but will eventually become
an issue when simulating (cNLS) in the next Chapter, because it involves interactions and
hence an infinite number of frequencies. Moreover, by using an FFT-based algorithm we
implicitly impose periodic boundary conditions.

IV-3.2.2 Discretization into a sum of Bubbles

We need to decompose any arbitrary function into a finite sum of 𝑁 bubbles. A solution
to this question has been proposed in [66], but it involves integrals over the whole phase
space, which is something we want to avoid.

We could also use a nonlinear least squares approach, but our experimental results
showed that it tends to yield spread out Gaussians, which may present huge overlaps
between them. We will observe in the next Chapter that huge overlaps do not mix well
with our nonlinear solution. The issue of discretizing an arbitrary function into a sum of
bubbles without too much overlap is not the main concern of this work, hence we will use
a visual trial-and-error discretization.

IV-3.2.3 Observables

In order to compare the bubble scheme against the spectral method, we compare them
both in the absence of interactions, i.e. on the harmonic oscillator (HO). We showed in
Lemma IV.2 the conservation of some quantities for (HO), we will focus on mass, energy
and momentum. When computing the observables for the spectral solution, we noted
that the approximation of the gradient using finite differences with periodic boundary
conditions yielded very rough results while the gradient approximation using the Fast
Fourier Transform gave more accurate results. We use the latter approximation in the
Figures of Section IV-4.3.2. When reporting the results in the following log-plots, all
values with an amplitude smaller than 10−16 were set to be equal to 10−16.

For all of the results shown, the spectral scheme is supplied with the exact initial
condition and not a projection on the grid of the bubbles discretization. We display
the relative evolution of each observable quantity, that is the evolution of each quantity
relative to the value of the quantity at time 0. In other words, for an observable quantity
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Figure IV-3.1 – Test case 1. Relative evolution of mass, energy and momentum with
bubbles and spectral methods. Δ𝑡 = 10−2. Spectral scheme with 𝑁𝑥 = 256, 𝑁𝑦 = 256.

𝑄, computed at each time {𝑡𝑛}𝑛≥0, its relative evolution is given by:

(𝑟𝑒𝑙𝑄)(𝑡𝑛) = ∣𝑄(𝑡𝑛) − 𝑄(𝑡0)
𝑄(𝑡0)

∣

Since 𝑄(𝑡0) is computed after the discretization of the initial condition, this means that
the discretization error is not reported in the Figures of Section IV-4.3.2.

IV-3.2.4 Numerical experiments

Test case 1: Weak interactions

The initial condition reads

𝜓(𝑡 = 0, 𝑥) = 𝑒−|𝑥−𝜇3|2𝑒𝑖 cosh |𝑥−𝜇3|, 𝑥 ∈ ℝ2, 𝜇3 = (1, 1). (IV-3.28)

The approximation of this function as a sum of bubbles is pretty straightforward: we
know that for 𝑥 small, cosh 𝑥 ≈ 1 + 𝑥2

2 , hence

𝜓(𝑡 = 0, 𝑥) ≈ 𝑒−|𝑥−𝜇3|2𝑒𝑖+𝑖 |𝑥−𝜇3|2
2 , 𝑥 ∈ ℝ2.

The results are displayed in Figure IV-3.1. The solution obtained with the bubble
scheme is at least one order of magnitude better than the spectral scheme.
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Figure IV-3.2 – Test case 2. Relative evolution of mass, energy and momentum with
bubbles and spectral methods. Δ𝑡 = 10−2. Time-integrator for the nonlinear part of the

splitting: Runge-Kutta of order 2. Spectral scheme with 𝑁𝑥 = 256, 𝑁𝑦 = 256.

Test case 2: Rotating Gaussians

This test case is an illustration of the good conservation properties of the modula-
tion algorithm, including the nonlinearities, as soon as the bubbles don’t have too much
overlap. The initial condition reads:

𝜓(𝑡 = 0, 𝑥) =
3

∑
𝑖=1

𝑒𝛾𝑗+𝑖𝛽𝑗⋅(𝑥−𝑋𝑗)− |𝑥−𝑋𝑗|2

2(𝐿𝑗)2 ,

where

𝐿1 = 3 𝛾1 = 5 𝑋1 = 7(1, 0) 𝛽1 = (𝑋1)⟂,

𝐿2 = 3 𝛾2 = −5 𝑋2 = 7 (−
√

3
2

, 1
2

) 𝛽2 = (𝑋2)⟂,

𝐿3 = 3 𝛾3 = 0 𝑋3 = 7 (−
√

3
2

, −1
2

) 𝛽3 = (𝑋3)⟂.

The numerical results are given in Figure IV-3.2. The spectral scheme (blue dash
line) is outperformed by the bubbles scheme (orange solid line) for all times 𝑡. The time
evolution of the discretized solution 𝑢 = ∑3

𝑗=1 𝑢𝑗 is given in Figure IV-3.3 at times
𝑡 ∈ {Δ𝑡, 5, 10, 15}. Note that, in this figure, the bounding box [−15, 15] × [−15, 15] is
only here for plotting purposes, and the solution 𝑢 is known analytically on the whole ℝ2

plane.
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(a) 𝑡 = Δ𝑡.

(b) 𝑡 = 5.

(c) 𝑡 = 10.

(d) 𝑡 = 15.

Figure IV-3.3 – Solution 𝑢(𝑡, 𝑥) for 𝑥 ∈ ℝ2, at different times 𝑡. For each panel corre-
sponding to a time 𝑡, we display the module of 𝑢 (left), the real part of 𝑢 (middle), and
the imaginary part of 𝑢 (right).
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Figure IV-3.4 – Test case 3. Relative evolution of mass, energy and momentum with
bubbles and spectral methods. Δ𝑡 = 10−2. Time-integrator for the nonlinear part of the

splitting: Runge-Kutta of order 2. Spectral scheme with 𝑁𝑥 = 256, 𝑁𝑦 = 256.

Test case 3: Zero phase initial data

The initial condition reads

𝜓(𝑡 = 0, 𝑥) = 𝜋𝑒− |𝑥−𝜇1|2
2 + 2𝑒− |𝑥−𝜇2|2

2 , 𝑥 ∈ ℝ2, 𝜇1 = (0, 2), 𝜇2 = (1, 0). (IV-3.29)

The results are displayed in Figure IV-3.4. The bubble solution (orange solid line)
outperforms the spectral method (blue dash line) on the harmonic oscillator, and the
solution obtained with the Bubbles scheme is about one order of magnitude better than
the spectral scheme.
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The case of the linear Schrödinger equation has just been treated in the previous
Chapter, and we now want to spice things up by considering the nonlinear Schrödinger
equation. It is straightforward to see that the computation |𝑢(𝑡)|2𝑢(𝑡) involves 𝒪(𝑁3)
bubbles. While it is technically possible to use 𝑁3 bubbles in the linear setting, it means
that the nonlinearity will then involve 𝒪(𝑁9) bubbles…In just a few iterations of the
method, the number of bubbles becomes unmanageable!

Therefore, some approximate solution is seeked, and it cannot be better than an
approximation. We will see in this Chapter how the Dirac-Frenkel principle – which has
always been applied in other works to the linear setting – can be used in the nonlinear
setting. To the author’s knowledge, it is the first account of the Dirac-Frenkel method
being applied with a nonlinearity.

We start this Chapter by presenting quickly the Dirac-Frenkel principle, and then
how it can be reformulated into a matrix problem. We note that, using a simplifying
assumption that we think is not totally restrictive, the coefficients of the linear system
can be computed analytically. Therefore, there is no need for a grid to evaluate the Dirac-
Frenkel 𝕃2 inner products, and the presented method is completely gridless. We end this
Chapter with some numerical experiments that showcase the advantages and limitations
of the method. Among the limitations, we can find the computational complexity which
depends polynomially on the number of bubbles, and the invertibility issues of the matrix
reformulation of the Dirac-Frenkel principle. While the first issue really appears when
polynomial nonlinearities are considered, the second issue is inherent to the Dirac-Frenkel
principle and we note that it has already been reported in previous works for the linear
setting.

All the content of this Chapter is also part of the joint, unpublished, work with Erwan
Faou and Pierre Raphaël [30].
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IV-4.1. Motivation

IV-4.1 Motivation

We are interested in approximating numerically the solution 𝜓(𝑡, 𝑥) to the cubic non-
linear Schrödinger equation with harmonic potential,

𝑖𝜕𝑡𝜓 + Δ𝑥𝜓 − |𝑥|2𝜓 = 𝜓|𝜓|2, 𝑥 ∈ ℝ𝑑, (cNLS)

where 𝑑 ≥ 1, | ⋅ | denotes the usual Euclidian norm over ℝ𝑑, and Δ𝑥 denotes the Laplace
operator over ℝ𝑑: Δ𝑥 = ∑𝑑

𝑖=1 𝜕2
𝑥𝑖

. This equation is also sometimes called time-dependent
Gross-Pitaevskii equation [21, 8, 83, 81]. We focus on a cubic nonlinearity for the sake of
clarity, but we emphasize the fact that everything we present is also applicable to other
types of polynomial nonlinearities, mutatis mudandis. Similarly, the extension to the equa-
tion (IV-4.1) – which is (cNLS) without the harmonic potential – is also straightforward.

Let us now explain the main ideas underlying the full modulation (IV-3.2) – developed
in various works, see for instance [57, 31] and the references therein – and why it is
particularly adapted to the nonlinear case.

Consider for instance the case of one bubble, i.e. 𝑁 = 1. When plugging the ansatz
(IV-3.2) into (cNLS), we obtain an equation of the form

𝑖𝜕𝑠𝑣 + Δ𝑦𝑣 − |𝑦|2𝑣 − |𝑣|2𝑣 + 𝑃(𝑠; 𝑦, 𝜕𝑦)𝑣 = 0,

where 𝑃(𝑠; 𝑦, 𝜕𝑦) is a quadratic operator in 𝑦 and 𝜕𝑦, which depends on time 𝑠 through the
parameters (𝐴, 𝐿, 𝐵, 𝑋, 𝛽, 𝛾) and their time derivatives with respect to 𝑠. See (IV-3.11)
for more precise detail. It is then possible to choose the parameters in such a way that
for instance 𝑃(𝑠; 𝑦, 𝜕𝑦)𝑣 = −𝜆𝑣 for some 𝜆 ∈ ℝ, and to take 𝑣 as a soliton solution of the
stationary equation

−Δ𝑦𝑣 + |𝑦|2𝑣 + |𝑣|2𝑣 = 𝜆𝑣.

This yields a differential system to be solved by the parameters (𝐴, 𝐿, 𝐵, 𝑋, 𝛽, 𝛾) which
is given below by (IV-3.16). It turns out that these equations form a completely integrable
Poisson system that can be solved, and the solution for a single bubble can be thus taken
as a modulated soliton.

In other words, taking 𝑣𝑗 = 𝑣 when 𝑁 = 1, a solution of the nonlinear equation
(IV-3.3) yields an exact solution 𝑢𝑗 = 𝑢 under the form (IV-3.2) of (cNLS).

This kind of approach has been used successfully in various situations from a theoret-
ical point of view, see [60, 57, 31, 61] and the references therein. Typically, when 𝑁 ≥ 2,
several modulated solitons interact and this can produce finite time blow-up of growth of
Sobolev norm phenomena. A large part of the analysis relies on the ability of calculating
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nonlinear interactions between two modulated solitons. This can be done for instance in
an integrable situation, e.g. the Szegö equation [36].

Another byproduct of these modulation techniques in 2D is to make a link between
(cNLS) on a finite time interval and the Schrödinger equation without harmonic potential

𝑖𝜕𝑠𝜓 + Δ𝑥𝜓 = 𝜓|𝜓|2, 𝑥 ∈ ℝ𝑑 (IV-4.1)

on an unbounded time interval. In this case, the modulation equations generate the so-
called lens transform, see for instance [18]. Note that our algorithms could be also be
applied to the latter equation but we will restrict our analysis to the Harmonic case. Let
us note as well that such modulation techniques can also be related with the families of
exact splitting introduced in [13], where the time coefficients can be seen as specific time
changes 𝑠 in the modulation equations.

To approximate the solution to the nonlinear part (NL), we use the Dirac-Frenkel-
MacLachlan principle. In theory, when the 𝑣𝑗 are finite sums of Hermite polynomials,
the calculation of the interactions boils down to the computation of integrals of products
of Hermite functions in different modulation frames, which a priori can be done in a
systematic way. In practice, these computations can get heavy and to simplify them we
will give the explicit result of the Gaussian case.

IV-4.2 The Dirac-Frenkel principle

In this section we consider the Schrödinger equation (cNLS). As it has been explained
before, the equation consists in two parts: the linear part (HO), and the nonlinear part
(NL). Chapter IV-3 was dedicated to solving the harmonic oscillator. We are interested
now in solving the nonlinear part, and as it is usually done for numerical simulations,
we will use a splitting method (see for instance [59, 40, 19]). This will allow us to solve
(cNLS) by solving separately (HO) and (NL), one after the other. By doing so, a splitting
error is made, which depends on the timestep Δ𝑡, and the order of the error depends on
the specific splitting method. It is also possible to use high-order splitting methods.

We focus on approximating numerically the solution to (NL):

𝑖𝜕𝑡𝜓 = 𝜓|𝜓|2.

We are free to use any method we want, but one has to keep in mind that Algorithm 2
solves (HO) exactly when 𝜓 is expressed under the form (IV-3.1), i.e. as a sum of bubbles.
Therefore we would like the approximate solution to (NL) to keep this particular form.
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This naturally calls for the use of the Dirac-Frenkel principle (abbreviated DF principle).
For more details, see [51, Sect. 3].

In theory, the computations can be performed in a very general situation, when all the
𝑣𝑗 involved in (IV-3.1)-(IV-3.2) are given in terms of Hermite polynomials. In essence, the
only difficulty lies in the evaluation of general integrals of products of Hermite functions
in different modulation frames, which can be done using generating functions techniques
for instance. In order to simplify the presentation, we will only consider the first Hermite
mode, a.k.a the Gaussian function. From now on, we consider

𝑣(𝑠, 𝑦) = 𝑒−|𝑦|2/2. (IV-4.2)

Remark IV.5

Note that the functions 𝑒− |𝑦|2
2 are simply

𝜑(0,…,0)(𝑦) = 𝐻0(𝑦1) ⋯ 𝐻0(𝑦𝑑),

hence we can use Section IV-3.1.3 for the linear part.

Another alternative would be to use nonlinear solitons and rely on numerical evalua-
tions of the corresponding integrals, but we will not use this approach in this work.

In the remainder of this Chapter, we consider ℳ a manifold of the sum of 𝑁 complex-
valued Gaussian functions:

ℳ ∶=
⎧
{
⎨
{
⎩

𝑢 ∈ 𝕃2(ℝ𝑑)
∣
∣
∣
∣

𝑢(𝑥) =
𝑁

∑
𝑗=1

𝐴𝑗

𝐿𝑗 𝑒𝑖𝛾𝑗+𝑖𝛽𝑗⋅(𝑥−𝑋𝑗)− 2+𝑖𝐵𝑗
4(𝐿𝑗)2

∣𝑥−𝑋𝑗∣2 ,

𝐴𝑗, 𝐵𝑗, 𝛾𝑗 ∈ ℝ, 𝐿𝑗 ∈ ℝ∗
+, 𝑋𝑗, 𝛽𝑗 ∈ ℝ𝑑

⎫
}
⎬
}
⎭

. (IV-4.3)

We look for a function 𝑢 ∈ ℳ that solves (NL) on ℳ. More precisely, 𝑢 is defined
such that its time derivative lies in the tangent space of ℳ at 𝑢, denoted 𝒯𝑢(𝑡)ℳ, and
such that the residual of equation (NL) is orthogonal to the tangent space. That is,

𝜕𝑡𝑢(𝑡) ∈ 𝒯𝑢(𝑡)ℳ, such that

⟨𝑓, 𝑖𝜕𝑡𝑢(𝑡) − 𝑢(𝑡)|𝑢(𝑡)|2⟩ = 0, ∀𝑓 ∈ 𝒯𝑢(𝑡)ℳ.
(IV-4.4)

Let 𝐵𝑢(𝑡) be a basis of 𝒯𝑢(𝑡)ℳ, then (IV-4.4) is equivalent to

𝜕𝑡𝑢(𝑡) ∈ 𝒯𝑢(𝑡)ℳ, such that

⟨𝑓, 𝑖𝜕𝑡𝑢(𝑡)⟩ = ⟨𝑓, 𝑢(𝑡)|𝑢(𝑡)|2⟩, ∀𝑓 ∈ 𝐵𝑢(𝑡).
(IV-4.5)
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A family (which may happen to be linearly dependent!) spanning the tangent space
𝒯𝑢(𝑡)ℳ is given by

𝐵𝑢(𝑡) = {𝑒𝑖Γ𝑗(𝑦𝑗)− |𝑦|2
2 , (𝑦𝑗

1)𝑒𝑖Γ𝑗(𝑦𝑗)− |𝑦𝑗|2
2 , … , (𝑦𝑗

𝑑)𝑒𝑖Γ𝑗(𝑦𝑗)− |𝑦𝑗|2
2 ,

|𝑦𝑗|2𝑒𝑖Γ𝑗(𝑦𝑗)− |𝑦𝑗|2
2 ∶ 𝑗 = 1, … , 𝑁} ,

=∶ {𝑏𝑗,1, 𝑏𝑗,2, … , 𝑏𝑗,𝑑+1, 𝑏𝑗,𝑑+2 ∶ 𝑗 = 1, … , 𝑁} ,

(IV-4.6)

where we defined
Γ𝑗(𝑦𝑗) ∶= 𝛾𝑗 + 𝐿𝑗𝛽𝑗 ⋅ 𝑦𝑗 − 𝐵𝑗

4
|𝑦𝑗|2.

We recall that the functions of 𝐵𝑢(𝑡) are obtained by differentiating 𝑢(𝑡) ∈ ℳ with respect
to each parameter. Thus, (IV-4.5) is equivalent to

𝜕𝑡𝑢(𝑡) ∈ 𝒯𝑢(𝑡)ℳ, such that

⟨𝑖𝜕𝑡𝑢(𝑡), 𝑏𝑗,𝑙⟩ = ⟨𝑢|𝑢|2, 𝑏𝑗,𝑙⟩, 𝑗 = 1, … , 𝑁, 𝑙 = 1, … , 𝑑 + 2.
(IV-4.7)

The next step consists in expressing (IV-4.7) as a linear system involving the param-
eters of the bubbles and their time derivative. We then solve the linear system, which
yields ODEs on the parameters that we can integrate numerically. The main advantage
of this approach is that it guarantees to keep the approximate solution of (NL) as a
sum of 𝑁 bubbles. There are however some issues in practice with the application of the
Dirac-Frenkel principle, we will discuss them in more details in Section IV-4.3.

In order to obtain the linear system, we first have to get the expression of 𝑖𝜕𝑡𝑢(𝑡) when
𝑣(𝑦) = 𝑒− |𝑦|2

2 : by summing (IV-3.10) over 𝑗 = 1, … , 𝑁, and using that 𝜕𝑠𝑣𝑗 = 0 (since 𝑣𝑗

is defined by (IV-4.2)), one has

𝑖𝜕𝑡𝑢 =
𝑁

∑
𝑗=1

𝑢𝑗

(𝐿𝑗)2 {|𝑦𝑗|2 (𝑖(𝐿𝑗)𝑠
𝐿𝑗 − 𝐵𝑗(𝐿𝑗)𝑠

2𝐿𝑗 + (𝐵𝑗)𝑠
4

)

+ 𝑦𝑗 ⋅ (−𝐿𝑗(𝛽𝑗)𝑠 + 𝑖(𝑋𝑗)𝑠
𝐿𝑗 − 𝐵𝑗

2𝐿𝑗 (𝑋𝑗)𝑠)

+𝑖(𝐴𝑗)𝑠
𝐴𝑗 − 𝑖(𝐿𝑗)𝑠

𝐿𝑗 + 𝛽 ⋅ (𝑋𝑗)𝑠 − (𝛾𝑗)𝑠} .

(IV-4.8)

We recall that the subscript 𝑠 denotes the time-differentiation with respect to time 𝑠.
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More concisely, we have

𝑖𝜕𝑡𝑢 =
𝑁

∑
𝑗=1

𝐴𝑗

(𝐿𝑗)3 𝑒𝑖Γ𝑗− |𝑦𝑗|2
2 {|𝑦𝑗|2 (𝐸𝑗,(5) + 𝑖𝐸𝑗,(6))

+ 𝑦𝑗 ⋅ (𝐸𝑗,(3) + 𝑖𝐸𝑗,(4))

+ (𝐸𝑗,(1) + 𝑖𝐸𝑗,(2))}

=
𝑁

∑
𝑗=1

𝐴𝑗

(𝐿𝑗)3 {𝑏𝑗,1 (𝐸𝑗,(1) + 𝑖𝐸𝑗,(2)) + 𝑏𝑗,2 (𝐸𝑗,(3)
1 + 𝑖𝐸𝑗,(4)

1 )

⋯ + 𝑏𝑗,𝑑+1 (𝐸𝑗,(3)
𝑑 + 𝑖𝐸𝑗,(4)

𝑑 ) + 𝑏𝑗,𝑑+2 (𝐸𝑗,(5) + 𝑖𝐸𝑗,(6))} ,

(IV-4.9)

where

𝐸𝑗,(1) ∶= 𝛽𝑗 ⋅ 𝑋𝑗
𝑠 − 𝛾𝑗

𝑠, 𝐸𝑗,(2) ∶= 𝐴𝑗
𝑠

𝐴𝑗 − 𝐿𝑗
𝑠

𝐿𝑗 ,

𝐸𝑗,(3)
𝑙 ∶= −𝐿𝑗𝛽𝑗

𝑙,𝑠 − 𝐵𝑗

2𝐿𝑗 𝑋𝑗
𝑙,𝑠, 𝐸𝑗,(4)

𝑙 ∶=
𝑋𝑗

𝑙,𝑠

𝐿𝑗 , 𝑙 = 1, … , 𝑑,

𝐸𝑗,(5) ∶= 𝐵𝑗
𝑠

4
− 𝐵𝑗𝐿𝑗

𝑠

2𝐿𝑗 , 𝐸𝑗,(6) ∶= 𝐿𝑗
𝑠

𝐿𝑗 ,

(IV-4.10)

Following our notation convention (given in the paragraph before Section IV-3.1), we
recall that a subscript 𝑡 or 𝑠 always denotes a time derivative (either with respect to time
𝑡 or 𝑠), the exponent 𝑗 denotes the bubble’s label, and the subscript 𝑙 denotes the 𝑙-th
component of a vector.

According to (IV-4.7), we then want to project 𝑖𝜕𝑡𝑢(𝑡) against every element of 𝐵𝑢(𝑡).
We obtain the following linear system:

AE = S, (IV-4.11)

where

A ∶=
⎛⎜⎜⎜
⎝

⟨𝑏1,1, 𝑏1,1⟩ ⟨𝑏1,2, 𝑏1,1⟩ … ⟨𝑏𝑁,𝑑+1, 𝑏1,1⟩ ⟨𝑏𝑁,𝑑+2, 𝑏1,1⟩
⋮ ⋮

⟨𝑏1,1, 𝑏𝑁,𝑑+2⟩ ⟨𝑏1,2, 𝑏𝑁,𝑑+2⟩ … ⟨𝑏𝑁,𝑑+1, 𝑏𝑁,𝑑+2⟩ ⟨𝑏𝑁,𝑑+2, 𝑏𝑁,𝑑+2⟩

⎞⎟⎟⎟
⎠

,
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E ∶=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝐴1

(𝐿1)3 (𝐸1,(1) + 𝑖𝐸1,(2))
𝐴1

(𝐿1)3 (𝐸1,(3)
1 + 𝑖𝐸1,(4)

1 )
⋮

𝐴1

(𝐿1)3 (𝐸1,(3)
𝑑 + 𝑖𝐸1,(4)

𝑑 )
𝐴1

(𝐿1)3 (𝐸1,(5) + 𝑖𝐸1,(6))
⋮

𝐴𝑗

(𝐿𝑗)3 (𝐸𝑗,(1) + 𝑖𝐸𝑗,(2))
𝐴𝑗

(𝐿𝑗)3 (𝐸𝑗,(3)
1 + 𝑖𝐸𝑗,(4)

1 )
⋮

𝐴𝑗

(𝐿𝑗)3 (𝐸𝑗,(3)
𝑑 + 𝑖𝐸𝑗,(4)

𝑑 )
𝐴𝑗

(𝐿𝑗)3 (𝐸𝑗,(5) + 𝑖𝐸𝑗,(6))
⋮

𝐴𝑁

(𝐿𝑁)3 (𝐸𝑁,(3)
𝑑 + 𝑖𝐸𝑁,(4)

𝑑 )
𝐴𝑁

(𝐿𝑁)3 (𝐸𝑁,(5) + 𝑖𝐸𝑁,(6))

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

and S ∶=
⎛⎜⎜⎜
⎝

⟨𝑢|𝑢|2, 𝑏1,1⟩
⋮

⟨𝑢|𝑢|2, 𝑏𝑁,𝑑+2⟩

⎞⎟⎟⎟
⎠

.

The matrix A ∈ ℂ(𝑑+2)𝑁,(𝑑+2)𝑁 is the Gram matrix of the family 𝐵𝑢(𝑡), which obviously
depends on time. We have E ∈ ℂ(𝑑+2)𝑁 and S ∈ ℂ(𝑑+2)𝑁. In order to solve the linear
system (IV-4.11) we shall use the Moore-Penrose pseudoinverse which always exists, and
which corresponds to the Least Squares solution if the matrix A∗A is invertible. The
matrix A is invertible if and only if 𝐵𝑢(𝑡) is a linearly independent family of 𝕃2(ℝ𝑑). We
can already notice that if two bubbles have the same parameters then the family will
be linearly dependent: this is why the Moore-Penrose pseudoinverse is used, instead of
A−1 which is not always well-defined. A variety of numerical techniques exist for solving
an ill-conditioned or singular linear system, see for instance [15, 37, 27, 75]. We have
chosen the Moore-Penrose pseudoinverse, because as G. Strang wrote in [75]: “When 𝐴−1

fails to exist, the best substitute is the pseudoinverse”. Other numerical techniques aim
to approximate efficiently the pseudoinverse solution, but the computation itself has not
been a computational burden during our numerical experiments so we haven’t looked into
more advanced techniques. As we already mentioned, the Dirac-Frenkel suffers from some
inherent issues, and the main problem is due to the non-invertibility of the matrix A.
Even when using the pseudoinverse these issues arise, as we will see in Section IV-4.3.

Once the linear system (IV-4.11) is solved, we obtain E, from which we can update the
modulation parameters. In order to solve numerically the linear system, we shall rewrite
it under a more convenient form. Let ARe ∶= Re (A), AIm ∶= Im (A), ERe ∶= Re (E),
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IV-4.2. The Dirac-Frenkel principle

EIm ∶= Im (E), SRe ∶= Re (S), and SIm ∶= Im (S). Then, (IV-4.11) writes:

AE = S ⟺ (ARe + 𝑖AIm )(ERe + 𝑖EIm ) = SRe + 𝑖SIm

⟺ {
ARe ERe − AIm EIm = SRe

AIm ERe + ARe EIm = SIm

⟺ (
ARe −AIm

AIm ARe
) (

ERe

EIm
) = (

SRe

SIm
) . (IV-4.12)

It is more convenient to solve (IV-4.12) than (IV-4.11), because we only have to deal with
real matrices and vectors.

Remark IV.6

We first tried to solve (IV-4.11) using the Moore-Penrose pseudoinverse, however it
yielded very poor and seemingly wrong results. After some investigation, we found
out that the issue seemed to be the complex numbers involved, and that they do not
mix well with the pseudoinverse. Note that it is purely a numerical issue, and most
probably due to the specific language or library used (the language used is Julia).
After separating the real and imaginary parts (i.e. solving the linear system (IV-4.12)),
we observed much better results.

Once (IV-4.12) is solved, we get the vector E = ERe + 𝑖EIm . Multiplying the compo-
nents corresponding to bubble 𝑗 by (𝐿𝑗)3/𝐴𝑗, we get the quantities (𝐸𝑗,(𝑘))𝑘=1,…,6.

By rearranging (IV-4.10), we are able to obtain the approximate update of the mod-
ulation parameters with respect to time 𝑡:

⎧
{{{{{{{{{
⎨
{{{{{{{{{
⎩

𝐴𝑗
𝑡 = 𝐴𝑗

(𝐿𝑗)2 (𝐸𝑗,(2) + 𝐸𝑗,(6)) ,

𝐿𝑗
𝑡 = 1

𝐿𝑗 𝐸𝑗,(6),

𝐵𝑗
𝑡 = 4

(𝐿𝑗)2 𝐸𝑗,(5) + 2
(𝐿𝑗)2 𝐵𝑗𝐸𝑗,(6),

𝑋𝑗
𝑡 = 1

𝐿𝑗 𝐸𝑗,(4),

𝛽𝑗
𝑡 = − 1

(𝐿𝑗)3 𝐸𝑗,(3) − 𝐵𝑗

2(𝐿𝑗)3 𝐸𝑗,(4),

𝛾𝑗
𝑡 = 1

𝐿𝑗 𝛽𝑗 ⋅ 𝐸𝑗,(4) − 1
(𝐿𝑗)2 𝐸𝑗,(1).

(IV-4.13)

Let us clarify now the procedure for obtaining the approximate update of the pa-
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Part IV, Chapter IV-4 – Nonlinear Schrödinger equation

rameters: the DF principle tells us that we need to solve (IV-4.11). In Remark IV.6, we
explained that it was better to solve (IV-4.12). Once (IV-4.12) is solved, we can get the
quantities (𝐸𝑗,(𝑘))𝑗=1,…,𝑁,𝑘=1,…,6. Then, we can update the modulation parameters of all
bubbles via the numerical integration of (IV-4.13).

IV-4.2.1 Computing coefficients of the linear system (IV-4.11)

In order to be able to compute A and S, we give the exact expression of the inner
products involved. We recall that these exact expressions have been obtained thanks to
the assumption 𝑣(𝑠, 𝑦) = 𝑒−|𝑦|2/2. They involve the Fourier transform of some functions,
let us first give the Fourier transform used. For 𝑓 ∈ 𝕃2(ℝ𝑑), the Fourier transform of 𝑓 is
denoted ̂𝑓, with the following convention:

̂𝑓(𝜉) ∶= ∫
ℝ𝑑

𝑓(𝑥)𝑒−𝑖𝜉⋅𝑥𝑑𝑥.

For 𝑗, 𝑙 = 1, … , 𝑁, let

∣
∣
∣
∣
∣
∣
∣
∣
∣

𝑧𝑗,𝑙 ∶= 2 + 𝑖𝐵𝑙

4(𝐿𝑙)2 + 2 − 𝑖𝐵𝑗

4(𝐿𝑗)2 ,

𝑎𝑗,𝑙 ∶= 𝑋𝑙

(𝐿𝑙)2 + 𝑋𝑗

(𝐿𝑗)2 ,

𝜉𝑗,𝑙 ∶= 𝐵𝑗

2(𝐿𝑗)2 𝑋𝑗 + 𝛽𝑗 − 𝐵𝑙

2(𝐿𝑙)2 𝑋𝑙 − 𝛽𝑙,

𝐶𝑗,𝑙 = exp {𝑖(𝛾𝑙 − 𝛾𝑗) − 2 + 𝑖𝐵𝑙

4(𝐿𝑙)2 |𝑋𝑙|2 − 2 − 𝑖𝐵𝑗

4(𝐿𝑗)2 |𝑋𝑗|2 − 𝑖𝛽𝑙 ⋅ 𝑋𝑙 + 𝑖𝛽𝑗 ⋅ 𝑋𝑗} .

(IV-4.14)
Define

𝑓𝑗,𝑙 ∶ 𝑥 ∈ ℝ𝑑 ↦ exp(−𝑧𝑗,𝑙|𝑥|2 + 𝑎𝑗,𝑙 ⋅ 𝑥) ∈ ℂ,

then, for 𝑛, 𝑚 = 1, … , 𝑑,

⟨𝑏𝑙,1, 𝑏𝑗,1⟩ = 𝐶𝑗,𝑙𝑓𝑗,𝑙(𝜉𝑗,𝑙)

⟨𝑏𝑙,𝑛+1, 𝑏𝑗,1⟩ =
𝐶𝑗,𝑙

𝐿𝑙 (𝑥𝑓𝑗,𝑙𝑛
− 𝑋𝑙

𝑛𝑓𝑗,𝑙) (𝜉𝑗,𝑙)

⟨𝑏𝑙,𝑑+2, 𝑏𝑗,1⟩ =
𝐶𝑗,𝑙

(𝐿𝑙)2 ( ̂|𝑥|2𝑓𝑗,𝑙 − 2𝑋𝑙 ⋅ 𝑥𝑓𝑗,𝑙 + |𝑋𝑙|2𝑓𝑗,𝑙) (𝜉𝑗,𝑙)

⟨𝑏𝑙,𝑛+1, 𝑏𝑗,𝑚+1⟩ =
𝐶𝑗,𝑙

𝐿𝑗𝐿𝑙 [ ̂𝑥𝑛𝑥𝑚𝑓𝑗,𝑙 − 𝑋𝑙
𝑛𝑥𝑚𝑓𝑗,𝑙 − 𝑋𝑗

𝑚𝑥𝑛𝑓𝑗,𝑙 + 𝑋𝑙
𝑛𝑋𝑗

𝑚𝑓𝑗,𝑙] (𝜉𝑗,𝑙)

⟨𝑏𝑙,𝑑+2, 𝑏𝑗,𝑚+1⟩ =
𝐶𝑗,𝑙

(𝐿𝑙)2𝐿𝑗
⎡⎢
⎣

̂𝑥𝑚|𝑥|2𝑓𝑗,𝑙 − 2𝑋𝑙 ⋅ ̂𝑥𝑚𝑥𝑓𝑗,𝑙 + |𝑋𝑙|2𝑥𝑚𝑓𝑗,𝑙

−𝑋𝑗
𝑚 ̂|𝑥|2𝑓𝑗,𝑙 + 2𝑋𝑗

𝑚𝑋𝑙 ⋅ 𝑥𝑓𝑗,𝑙 − |𝑋𝑙|2𝑋𝑗
𝑚𝑓𝑗,𝑙

⎤⎥
⎦

(𝜉𝑗,𝑙),
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and

⟨𝑏𝑙,𝑑+2, 𝑏𝑗,𝑑+2⟩ =
𝐶𝑗,𝑙

(𝐿𝑙)2(𝐿𝑗)2

⎡
⎢
⎢
⎢
⎢
⎢
⎣

̂|𝑥|4𝑓𝑗,𝑙 − 2𝑋𝑙 ⋅ ̂|𝑥|2𝑥𝑓𝑗,𝑙 + |𝑋𝑙|2 ̂|𝑥|2𝑓𝑗,𝑙

−2𝑋𝑗 ⋅ ̂𝑥|𝑥|2𝑓𝑗,𝑙 + 4
𝑑

∑
𝑛,𝑚=1

𝑋𝑙
𝑛𝑋𝑗

𝑚 ̂𝑥𝑛𝑥𝑚𝑓𝑗,𝑙

−2|𝑋𝑙|2𝑋𝑗 ⋅ 𝑥𝑓𝑗,𝑙 + ̂|𝑥|2𝑓𝑗,𝑙|𝑋𝑗|2

−2|𝑋𝑗|2𝑋𝑙 ⋅ 𝑥𝑓𝑗,𝑙 + |𝑋𝑙|2|𝑋𝑗|2𝑓𝑗,𝑙

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(𝜉𝑗,𝑙).

(IV-4.15)
Moreover, we recall that A is Hermitian, so the above relations allow us to obtain all
components of the matrix A.

We now compute the components of the vector S. For 𝑗, 𝑘, 𝑙, 𝑚 = 1, … , 𝑁, let

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(𝐶Im )𝑗,𝑘,𝑙,𝑚 ∶= exp {𝑖 (𝛾𝑘 + 𝛾𝑙 − 𝛾𝑚 − 𝛾𝑗)}

× exp {𝑖 (𝛽𝑗 ⋅ 𝑋𝑗 + 𝛽𝑚 ⋅ 𝑋𝑚 − 𝛽𝑙 ⋅ 𝑋𝑙 − 𝛽𝑘 ⋅ 𝑋𝑘)}

× exp {−𝑖 ( 𝐵𝑘

4(𝐿𝑘)2 |𝑋𝑘|2 + 𝐵𝑙

4(𝐿𝑙)2 |𝑋𝑙|2 − 𝐵𝑚

4(𝐿𝑚)2 |𝑋𝑚|2 − 𝐵𝑗

4(𝐿𝑗)2 |𝑋𝑗|2)} ,

(𝐶Re )𝑗,𝑘,𝑙,𝑚 ∶= exp {−1
2

(|𝑋𝑘|2

(𝐿𝑘)2 + |𝑋𝑙|2

(𝐿𝑙)2 + |𝑋𝑚|2

(𝐿𝑚)2 + |𝑋𝑗|2

(𝐿𝑗)2 )} ,

𝐶𝑗,𝑘,𝑙,𝑚 ∶= 𝐴𝑘𝐴𝑙𝐴𝑚

𝐿𝑘𝐿𝑙𝐿𝑚 (𝐶Im )𝑗,𝑘,𝑙,𝑚(𝐶Re )𝑗,𝑘,𝑙,𝑚,

𝜉𝑗,𝑘,𝑙,𝑚 ∶= − [𝛽𝑘 + 𝛽𝑙 − 𝛽𝑚 − 𝛽𝑗 + 𝐵𝑘

2(𝐿𝑘)2 𝑋𝑘 + 𝐵𝑙

2(𝐿𝑙)2 𝑋𝑙 − 𝐵𝑚

2(𝐿𝑚)2 𝑋𝑚 − 𝐵𝑗

2(𝐿𝑗)2 𝑋𝑗] ,

𝑧𝑗,𝑘,𝑙,𝑚 ∶= 1
2

( 1
(𝐿𝑘)2 + 1

(𝐿𝑙)2 + 1
(𝐿𝑚)2 + 1

(𝐿𝑗)2 )

+ 𝑖
4

( 𝐵𝑘

(𝐿𝑘)2 + 𝐵𝑙

(𝐿𝑙)2 − 𝐵𝑚

(𝐿𝑚)2 − 𝐵𝑗

(𝐿𝑗)2 ) ,

𝑎𝑗,𝑘,𝑙,𝑚 ∶= 1
(𝐿𝑘)2 𝑋𝑘 + 1

(𝐿𝑙)2 𝑋𝑙 + 1
(𝐿𝑚)2 𝑋𝑚 + 1

(𝐿𝑗)2 𝑋𝑗.

(IV-4.16)
Define

𝑓𝑗,𝑘,𝑙,𝑚 ∶ 𝑥 ∈ ℝ𝑑 ↦ exp(−𝑧𝑗,𝑘,𝑙,𝑚|𝑥|2 + 𝑎𝑗,𝑘,𝑙,𝑚 ⋅ 𝑥) ∈ ℂ,
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then, for 1 ≤ 𝑟 ≤ 𝑑,

⟨𝑢|𝑢|2, 𝑏𝑗,1⟩ = ∑
𝑘,𝑙,𝑚

𝐶𝑗,𝑘,𝑙,𝑚
̂𝑓𝑗,𝑘,𝑙,𝑚(𝜉𝑗,𝑘,𝑙,𝑚)

⟨𝑢|𝑢|2, 𝑏𝑗,𝑟+1⟩ = ∑
𝑘,𝑙,𝑚

𝐶𝑗,𝑘,𝑙,𝑚

𝐿𝑗 ( ̂𝑥𝑟𝑓𝑗,𝑘,𝑙,𝑚(𝜉𝑗,𝑘,𝑙,𝑚) − 𝑋𝑗
𝑟 ̂𝑓𝑗,𝑘,𝑙,𝑚(𝜉𝑗,𝑘,𝑙,𝑚)) (IV-4.17)

⟨𝑢|𝑢|2, 𝑏𝑗,𝑑+2⟩ = ∑
𝑘,𝑙,𝑚

𝐶𝑗,𝑘,𝑙,𝑚

(𝐿𝑗)2 (
̂|𝑥|2𝑓𝑗,𝑘,𝑙,𝑚(𝜉𝑗,𝑘,𝑙,𝑚) − 2𝑋𝑗 ⋅ ̂𝑥𝑓𝑗,𝑘,𝑙,𝑚(𝜉𝑗,𝑘,𝑙,𝑚)

+|𝑋𝑗|2 ̂𝑓𝑗,𝑘,𝑙,𝑚(𝜉𝑗,𝑘,𝑙,𝑚)
) .

(IV-4.18)

We refer to Section IV-6.2 for more details. Moreover, Lemma IV.5 gives the needed
Fourier transform.

Lemma IV.5: Fourier transform of complex Gaussians

Let 𝑧 ∈ ℂ, Re (𝑧) ≥ 0. Then,

𝑒−𝑧|⋅|2(𝜉) = (𝜋
𝑧

)
𝑑
2 𝑒− |𝜉|2

4𝑧 , 𝜉 ∈ ℝ𝑑. (IV-4.19)

More generally, let 𝑧 = 𝑧1 + 𝑖𝑧2 ∈ ℂ, 𝑧1, 𝑧2 ∈ ℝ, 𝑧1 > 0, 𝑎 ∈ ℝ𝑑 and

𝑓 ∶ 𝑥 ∈ ℝ𝑑 ↦ exp (−𝑧|𝑥|2 + 𝑎 ⋅ 𝑥) ∈ ℂ, (IV-4.20)

then we have the Fourier transforms given by Table IV-4.1.

Proof. The proof relies on straightforward but lengthy computations. Details are given in
Section IV-6.1.

Remark IV.7: Computational complexity

Throughout this section, we have chosen

𝑣𝑗(𝑠𝑗, 𝑦𝑗) = 𝑒− 1
2 |𝑦𝑗|2 .

This choice was made so that the inner products involved in the application of the DF
principle are easily computable in an exact way. Therefore we do not rely on numer-
ical integration to compute the coefficients of the linear system (IV-4.11). In partic-
ular, this shows that the computational effort required to obtain the linear system is
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ℎ(𝑥) ℎ̂(𝜉)/𝑒− (𝜉+𝑖𝑎)⋅(𝜉+𝑖𝑎)
4𝑧

𝑓 (𝜋
𝑧 )

𝑑
2

𝑥𝑓 −𝑖 (𝜋
𝑧 )

𝑑
2 𝜉+𝑖𝑎

2𝑧

𝑥𝑚𝑥𝑛𝑓 − 1
4𝑧2 (𝜋

𝑧 )
𝑑
2 (𝜉𝑛 + 𝑖𝑎𝑛) (𝜉𝑚 + 𝑖𝑎𝑚)

𝑥2
𝑚𝑓 1

2𝑧 (𝜋
𝑧 )

𝑑
2 [1 − (𝜉𝑚+𝑖𝑎𝑚)2

2𝑧 ]

|𝑥|2𝑓 1
2𝑧 (𝜋

𝑧 )
𝑑
2 [𝑑 − |𝜉|2+2𝑖𝑎⋅𝜉−|𝑎|2

2𝑧 ]

𝑥𝑚|𝑥|2𝑓 − 𝑖
4𝑧2 (𝜋

𝑧 )
𝑑
2 (𝜉𝑚 + 𝑖𝑎𝑚) [𝑑 + 2 − |𝜉|2+2𝑖𝑎⋅𝜉−|𝑎|2

2𝑧 ]

𝑥2
𝑚𝑥2

𝑛𝑓 1
4𝑧2 (𝜋

𝑧 )
𝑑
2 (1 − (𝜉𝑛+𝑖𝑎𝑛)2

2𝑧 ) (1 − (𝜉𝑚+𝑖𝑎𝑚)2

2𝑧 )

𝑥4
𝑚𝑓 1

4𝑧2 (𝜋
𝑧 )

𝑑
2 [3 − 6 (𝜉𝑚+𝑖𝑎𝑚)2

2𝑧 + (𝜉𝑚+𝑖𝑎𝑚)4

4𝑧2 ]

Table IV-4.1 – Fourier Transform of some polynomials in 𝑥 = (𝑥1, … , 𝑥𝑑) ∈ ℝ𝑑

multiplied by 𝑓(𝑥) = 𝑒−𝑧|𝑥|2+𝑎⋅𝑥, 𝑧 ∈ ℂ, Re (𝑧) > 0, 𝑎 ∈ ℝ𝑑.

𝒪(𝑁4𝑑 + 𝑁2𝑑2). This complexity can be obtained by simply counting the elementary
operations (or equivalently, flops) needed to fill the linear system (IV-4.11): in order to
compute all the coefficients of the matrix A, the most costful operation is (IV-4.15),
which is 𝒪(𝑑2) for each inner product ⟨𝑏𝑙,𝑑+2, 𝑏𝑗,𝑑+2⟩. Since the indices 𝑙, 𝑗 range from
1 to 𝑁, there are 𝑁2 such inner products to compute. This gives the 𝒪(𝑁2𝑑2) cost.
We also have to compute the coefficients of the vector of interactions S, and the most
costful computations are given by (IV-4.17): it is a sum over 3 indices ranging from
1 to 𝑁, hence an 𝒪(𝑁3) cost per inner product ⟨𝑢|𝑢|2, 𝑏𝑗,𝑟+1⟩. The index 𝑗 ranges
from 1 to 𝑁, and 𝑟 from 1 to 𝑑. Thus, there are 𝑁𝑑 such inner products to compute,
which gives a cost for S of 𝒪(𝑁4𝑑). To obtain the total complexity, we have to add
the cost of computing the pseudoinverse of the Hermitian matrix A ∈ ℂ(𝑑+2)𝑁,(𝑑+2)𝑁,
which is 𝒪(𝑁3𝑑3) (see for instance [37, Fig. 8.6.1] for the computational complexity of
the pseudoinverse). We also mention that one possible way to improve (from a com-
putational point of view) the numerical solution of (IV-4.11) is to consider low-rank
approximations, see for example [65]. This yields the overall computational complex-
ity: 𝒪(𝑁4𝑑 + 𝑁3𝑑3). In a more general setting, one could use the Hermite basis
decomposition (IV-3.14) and perform all computations exactly. This would yield more
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involved computations and we chose the easy way out by experimenting only with
Gaussian functions, but this is completely doable. By using the full Hermite basis, the
complexity would also grow with the number of Hermite modes used.

Remark IV.8

If the computations can be performed by hand, as it is the case with Gaussian func-
tions 𝑣 (and a priori with Hermite functions), the method proposed truly is grid-free.
If arbitrary functions 𝑣 are used, then we cannot expect to be able to compute the
inner products analytically by hand. We then have to resort to numerical integra-
tion, and the curse of dimensionality occurs. This is only due to being able to do
most of the computations manually beforehand. If they cannot be done, they have
to be approximated within the algorithm and this will yield a much more expensive
algorithm.

By gathering the ideas mentioned previously, we obtain Algorithm 4 which can be
used to obtain an approximate solution to (cNLS) as a sum of bubbles, using the Strang
splitting between the linear and nonlinear parts, and using an arbitrary explicit time-
integrator for the nonlinear part. The splitting error can be analyzed separately from the
other types of errors, and we refer to [59, 40, 28, 19] for its analysis.

Algorithm 4 Approximating a solution to (cNLS) as a sum of bubbles.
Input:
— The bubble discretization of (IV-3.1), which gives the functions 𝑢𝑗.
— For each function 𝑢𝑗, its modulation parameters (𝐴𝑗, 𝐵𝑗, 𝐿𝑗, 𝛽𝑗, 𝑋𝑗, 𝛾𝑗).
for Each timestep of size 𝑑𝑡 do

for 𝑗 = 1, … , 𝑁 do ▷ 𝑗 denotes a bubble’s index.
Use Algorithm 2 to update the bubbles over a timestep of size 𝑑𝑡/2.
for each stage of a time-integrator do

Compute the coefficients of the linear system (IV-4.11).
Solve the linear system (IV-4.11) to obtain E.
Use (IV-4.13) to update the parameters over a timestep whose length depends

on the stage of the time-integrator.
end for
Use Algorithm 2 to update the bubbles over a timestep of size 𝑑𝑡/2.

end for
Output:

end for
— The bubbles 𝑢𝑗(𝑇 , ⋅) given by (IV-3.2), solution to (cNLS).
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IV-4.2. The Dirac-Frenkel principle

IV-4.2.2 Hamiltonian and norm conservation for the interac-
tions

When solving (NL) via the DF principle, i.e. when solving the linear system (IV-4.11),
a Hamiltonian is conserved.

Lemma IV.6

Let 𝑢(𝑡) be the approximation to (NL) obtained by applying the Dirac-Frenkel prin-
ciple, and define

𝐻interactions(𝑡) ∶= 1
4

⟨𝑢(𝑡), 𝑢(𝑡)|𝑢(𝑡)|2⟩ = 1
4

⟨𝑢(𝑡)2, 𝑢(𝑡)2⟩.

Then 𝐻interactions is conserved, i.e.

d
d𝑡

𝐻interactions(𝑡) = 0,

and the 𝕃2 norm of 𝑢 is also conserved.

Proof. We have

𝐻interactions(𝑡) ∶= 1
4

⟨𝑢(𝑡), 𝑢(𝑡)|𝑢(𝑡)|2⟩ = 1
4

⟨𝑢(𝑡)2, 𝑢(𝑡)2⟩,

by using the Hermitian property of the inner product ⟨⋅, ⋅⟩. Then,

d
d𝑡

𝐻interactions(𝑡) = 1
4

d
d𝑡

⟨𝑢(𝑡)2, 𝑢(𝑡)2⟩

= 1
4

⟨2𝑢(𝑡)𝜕𝑡𝑢(𝑡), 𝑢(𝑡)2⟩ + 1
4

⟨𝑢(𝑡)2, 2𝑢(𝑡)𝜕𝑡𝑢(𝑡)⟩

= Re ⟨𝑢(𝑡)𝜕𝑡𝑢(𝑡), 𝑢(𝑡)2⟩

= Re ⟨𝜕𝑡𝑢(𝑡), 𝑢(𝑡)|𝑢(𝑡)|2⟩ .

By definition of 𝜕𝑡𝑢(𝑡), we have 𝜕𝑡𝑢(𝑡) ∈ 𝒯𝑢(𝑡)ℳ, hence we can take 𝑓 = 𝜕𝑡𝑢(𝑡) in
(IV-4.4). We obtain the following equality:

⟨𝜕𝑡𝑢(𝑡), 𝑢(𝑡)|𝑢(𝑡)|2⟩ = ⟨𝜕𝑡𝑢(𝑡), 𝑖𝜕𝑡𝑢(𝑡)⟩ = −𝑖‖𝜕𝑡𝑢(𝑡)‖2.

Therefore,
d
d𝑡

𝐻interactions(𝑡) = Re (−𝑖‖𝜕𝑡𝑢(𝑡)‖2) = 0.

Using similar ideas, we can easily show the conservation of the 𝕃2 norm: we obviously
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have 𝑢(𝑡) ∈ 𝒯𝑢(𝑡)ℳ, hence

d
d𝑡

‖𝑢(𝑡)‖2 = 2Re ⟨𝑢(𝑡), 𝜕𝑡𝑢(𝑡)⟩ = 2Re ⟨𝑢(𝑡), −𝑖𝑢(𝑡)|𝑢(𝑡)|2⟩

= 2Re (𝑖⟨|𝑢(𝑡)|2, |𝑢(𝑡)|2⟩) = 0.

We have established the conservation of some quantities for both the linear and non-
linear part, but we are ultimately interested in the conservation properties when the two
parts are combined. The composition of the linear and nonlinear parts conserve exactly
the 𝕃2 norm, thus it is conserved through splitting. For the Hamiltonian of (cNLS), the
Hamiltonian of the linear part is conserved exactly in the linear part, and the Hamiltonian
of the nonlinear part is conserved exactly in the nonlinear part. When combining these
two parts via splitting, we get that the Hamiltonian of (cNLS) is conserved up to the
splitting error.

IV-4.2.3 Recovering the harmonic oscillator equations

Suppose the family 𝐵𝑢(𝑡) ⊂ 𝕃2(ℝ𝑑) defined by (IV-4.6) is linearly independent, and
consider the equation (HO). By summing equation (IV-3.11) over 𝑗 = 1, … , 𝑁 with
𝑣𝑗(𝑠𝑗, 𝑦𝑗) = 𝑒− |𝑦𝑗|2

2 , and letting this sum be equal to zero, we obtain an equation of
the form

𝑁
∑
𝑗=1

(𝑐𝑗,1𝑏𝑗,1 + 𝑐𝑗,2𝑏𝑗,2 + ⋯ + 𝑐𝑗,𝑑+1𝑏𝑗,𝑑+1 + 𝑐𝑗,𝑑+2𝑏𝑗,𝑑+2) = 0. (IV-4.21)

The coefficients 𝑐𝑘,𝑙 are, for instance, obtained by identifying powers of 𝑦 and ∇𝑦 in
(IV-3.11). Thanks to the assumption that 𝐵𝑢(𝑡) is a linearly independent family, we know
that we must have

𝑐𝑘,1 = 𝑐𝑘,2 = ⋯ = 𝑐𝑘,𝑑+1 = 𝑐𝑘,𝑑+2 = 0, 𝑘 = 1, … , (𝑑 + 2)𝑁. (IV-4.22)

This yields exactly the system of equations (IV-3.16). Indeed, in (IV-3.16), we set the
coefficient for each power of 𝑦 and ∇𝑦 to 0, except for the “-1”. The “-1” can be understood
as needed to “compensate” the Laplacian operator applied to 𝑣, in the case of 𝑣 a Hermite
function, because then

Δ𝑦𝐻𝑚(𝑦) = |𝑦|2𝐻𝑚(𝑦).

In other words, the DF principle approach gives the same equations as those given in
Section IV-3.1.3 when 𝐵𝑢(𝑡) is a linearly independent family. However, our approach as

200



IV-4.3. Numerical examples

described in Section IV-3.1.3 allows to solve them exactly and not only numerically with
some numerical time-integrator.

Finally, if the family 𝐵𝑢(𝑡) is linearly dependent, then we cannot write equation
(IV-4.22) anymore, hence the DF principle approach in the linear case fails. Our ap-
proach avoids this issue by naturally imposing conditions (IV-4.22) (which are the same
as (IV-3.12)).

IV-4.3 Numerical examples

In this Section we will assess the numerical efficiency of the bubble scheme in its
nonlinear setting. The reference scheme will be a slight variation of the spectral scheme
given in Section IV-3.2. More precisely, we use a Strang splitting on (cNLS), so that we
can reuse the spectral scheme from the linear Chapter. For the grid approximation of the
solution to (NL), we use the fact that the modulus |𝜓(⋅, 𝑥)| is conserved when solving
(NL). Indeed, if we multiply (NL) by 𝜓, we get

𝑖𝜓𝜕𝑡𝜓 = |𝜓|4.

By taking the complex conjugate of this equation,

−𝑖𝜓𝜕𝑡𝜓 = |𝜓|4.

Finally,

𝑖𝜕𝑡|𝜓|2 = 𝑖𝜕𝑡 (𝜓𝜓) = 𝑖𝜓𝜕𝑡𝜓 + 𝑖𝜓𝜕𝑡𝜓

= |𝜓|4 − |𝜓|4 = 0,

which implies that the modulus of 𝜓 is constant with respect to time 𝑡. The spectral
scheme is the nonlinear setting is then fully described by Algorithm 5.

We use the results of Section IV-4.2.1 in order to compute the linear system (IV-4.11).
We recall that those computations were performed analytically since we used the assump-
tion 𝑣(𝑠, 𝑦) = 𝑒− |𝑦|2

2 .

IV-4.3.1 Discretization into a sum of Bubbles

We need to decompose any arbitrary function into a finite sum of 𝑁 bubbles. A solution
to this question has been proposed in [66], but it involves integrals over the whole phase
space, which is something we want to avoid.
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Algorithm 5 Spectral solver for (cNLS), with a Strang Splitting method.
Input:
— Grid: a uniform discretization of a finite volume subset of ℝ𝑑

— the initial data 𝜓0.
Discretize the initial data 𝜓0 on Grid ⊂ ℝ𝑑, and let 𝜂 be this discretization.
for Each timestep of size Δ𝑡 do

Use Algorithm 3 with a stepsize Δ𝑡/2.
for 𝑥 ∈ Grid do ▷ Add interactions.

Multiply 𝜂(𝑥) by 𝑒−𝑖 Δ𝑡 |𝜂(𝑥)|2 .
end for
Use Algorithm 3 with a stepsize Δ𝑡/2.

end for
Output:
— 𝜂 is approximation on Grid of 𝜓(𝑇 , ⋅), where 𝜓 is the solution to (cNLS).

We could also use a nonlinear least squares approach, but our experimental results
showed that it tends to yield spread out Gaussians, which may present huge overlaps
between them. The overlaps cause issues with the DF principle, for instance a blow-up of
the conservative quantities. This has been observed during our experiments but the results
are not reported in the numerical results. The issue of discretizing an arbitrary function
into a sum of bubbles is not the main concern of this work, hence we will consider initial
conditions whose bubble discretization is natural and straightforward. Another possible
way of discretizing the initial data is outlined in [1]. Generally, the discretization of an
arbitrary function as a sum of Gaussian functions is an active research area, and we can
cite for instance [12] who studies several discretization methods. This work also has some
perspectives about the high-dimensional case, where the discretization using quadrature
rules faces the curse of dimensionality. Finally, if we do not restrict ourselves to Gaussian
functions and allow general Hermite functions, then the discretization simply consists
in projecting the initial condition onto this basis, and truncating the highest modes if
necessary.

IV-4.3.2 Results

Some of the given examples are adapted from [8]. Note that for each example, the
solution of the harmonic oscillator is computed for each time step {𝑡𝑛}𝑛≥0. In practice, if
one needs the solution of (HO) at time 𝑡𝑛, they can simply use Algorithm 2 with 𝑇 = 𝑡𝑛,
and there is no need for a time discretization.

In this regard, the numerical simulation of (IV-3.2) outperforms the spectral scheme
of reference. When 𝑀 ≥ 1 Hermite modes are considered in each dimension for each
bubble, the computational complexity simply is 𝒪(𝑁(𝑀𝑑 + 𝑑)). This is very favorable
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for high-dimensional use if the number of Hermite modes is small. In contrast, when the
nonlinear part is introduced, the use of the Dirac-Frenkel principle makes the computa-
tional complexity grow polynomially with 𝑁 and 𝑑. It gets even worse if we allow Hermite
modes other than the Gaussian function. Furthermore, we have to take into account the
numerical issues caused by the DF principle (see for instance [47, 69]).

In our numerical results, we have used 𝑇 = 100. We note that it is on the same order
of magnitude as the final times from [14], and much larger than the simulation times in
[5].

When solving the nonlinear part (NL) of (cNLS) using the Dirac-Frenkel approach,
we have to integrate (IV-4.13). In practice, we used a second-order Runge-Kutta time-
integrator (see for instance [6, Eqn. (6.10.10)]). Since the Strang splitting error is of order
2 in time, a second-order time-integrator is enough.

Our numerical implementation has been done in Julia.

Test case 1: Weak interactions

The initial condition is given in Section IV-3.2.4, and the results for the non linear case
are displayed in Figure IV-4.1. This example shows the performance of the DF principle
approach in its most efficient setting: it only has one bubble. This explains the very good
conservation results obtained: the bubbles scheme (orange solid line) outperforms the
spectral scheme (blue dash line) on (cNLS), except for the energy. However, in this case,
the error of the DF principle method remains globally less than one order of magnitude
larger than the error from the spectral method.

Test case 2: Rotating Gaussians

This test case is an illustration of the good conservation properties of the modulation
algorithm, including the nonlinearities, as soon as the bubbles don’t have too much over-
lap. The initial condition is given in Section IV-3.2.4, and the results are given in Figure
IV-4.2. We can observe that, for this test case, the Dirac-Frenkel principle works well,
since the bubbles do not present too much overlap. The spectral scheme (blue dash line)
is outperformed by the bubbles scheme (orange solid line) for all times 𝑡, and the spectral
scheme performs poorly for large times in the presence of cubic interactions. Note that,
in this figure, the bounding box [−15, 15] × [−15, 15] is only here for plotting purposes,
and the solution 𝑢 is known analytically in the whole ℝ2 plane.
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Figure IV-4.1 – Test case 1. Relative evolution of mass, energy and momentum with
bubbles and spectral methods. Δ𝑡 = 10−2. Time-integrator for the nonlinear part of the

splitting: Runge-Kutta of order 2. Spectral scheme with 𝑁𝑥 = 256, 𝑁𝑦 = 256.

0 20 40 60 80 100
10−16

10−15

10−14

10−13

10−12

𝑡

L2 norm rel.

0 20 40 60 80 100
10−13

10−11

10−9

10−7

10−5

10−3

10−1

𝑡

Energy rel.

Spectral Bubbles

0 20 40 60 80 100

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

𝑡

Momentum rel.

Figure IV-4.2 – Test case 2. Relative evolution of mass, energy and momentum with
bubbles and spectral methods. Δ𝑡 = 10−2. Time-integrator for the nonlinear part of the

splitting: Runge-Kutta of order 2. Spectral scheme with 𝑁𝑥 = 256, 𝑁𝑦 = 256.
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Figure IV-4.3 – Test case 3. Relative evolution of mass, energy and momentum with
bubbles and spectral methods. Δ𝑡 = 10−3. Time-integrator for the nonlinear part of the

splitting: Runge-Kutta of order 2. Spectral scheme with 𝑁𝑥 = 256, 𝑁𝑦 = 256.

Test case 3: Zero phase initial data

The initial condition is given in Section IV-3.2.4 and the results are given in Figure
IV-4.3. We can note that the bubble solution (orange solid line) is outperformed by the
spectral method (blue dash line). When we compare them on (cNLS), the DF principle
suffers from inherent issues (already mentioned in [47, 69, 50] for instance) and gives very
poor results. This can be explained by the overlapping of bubbles, which then gives a
badly-conditioned matrix A. Note that, in order to be able to use DF principle for this
test case, the time step Δ𝑡 had to be lowered from Δ𝑡 = 10−2 (the timestep used for
all other numerical results) to Δ𝑡 = 10−3. Otherwise, the pseudoinverse of the matrix A
was too badly conditioned. Even then, the results are very poor and illustrate the issues
inherent to the Dirac-Frenkel principle.
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perspectives

We presented in this work an approach based on recent results from [60, 57, 31]. It
allows to solve exactly the harmonic oscillator (HO) for initial functions that can be rep-
resented as a sum of modulated functions (the bubbles), for a certain kind of modulation.

In this context we focused on a particular subclass of such functions, modulated Her-
mite functions, which have the advantage of allowing explicit computations. This is par-
ticularly interesting since we do not have to rely on any sort of discretization of the phase
space, which is usually the main computational burden in numerical simulations. We ob-
tain an algorithm which yields an exact solution as soon as the initial data is a sum of
modulated Hermite functions. If we consider an arbitrary initial function, it suffices to
project it into onto the Hermite basis and to perform analytical time-evolution. Moreover,
the algorithm only relies on a small number of parameters whose time-evolution is ex-
plicit, making it very fast and computationally efficient. However, the algorithm possesses
some limitations. The most obvious one is that we solved the harmonic oscillator, which
allowed us to use Hermite functions and to integrate exactly the modulation parameters
with respect to time. This is very restrictive, and one could wonder if such results hold
for more general potential functions 𝑉. It seems easy and straightforward to obtain mod-
ulation equations for a quadratic potential 𝑉 using the results given here, but it is much
less clear how the Hermite decomposition will work with arbitrary potentials. One option
could be to use Hagedorn functions, see Section IV-2.2.4. If one considers a non quadratic
potential, the simplification mentioned by Heller [43, 42] could be interesting: it consists in
using local quadratic approximations of the potential. In this case, an extended numerical
analysis would be required to see how this local approximation affects the results.

On our numerical tests, the bubble algorithm outperforms a spectral method when
compared on the harmonic oscillator. Moreover, any grid-based method is inherently
bound to a finite subset of ℝ𝑑 to which we have to add boundary conditions, while the
bubble approach does not have such restrictions. We emphasize the fact that the algo-
rithm presented here in the case of Gaussian functions extends in a natural manner when
dealing with complex modulated Hermite functions. The presented algorithm is also more
general in some sense than other grid-free spectral methods: indeed, we allow multiple
Hermite basis (basically one basis per bubble), so that the number of Hermite modes for
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a given initial condition can remain low. This constrasts with, for example, the schemes
presented in [11, 10, 80], where only one Hermite basis is considered. Depending on the
initial condition, we may need many more Hermite modes with one basis than with sev-
eral bases (for example, if the initial condition is made of two bumps far away from each
other).

We also extended the results from [31] by allowing cubic interactions, at the cost of
approximating the solution to the cubic nonlinear equation (NL) via the Dirac-Frenkel
principle. We only considered modulated Gaussian functions, because they allowed us to
easily perform explicit computations and to obtain a numerical algorithm whose compu-
tational complexity is 𝒪(𝑁4𝑑 + 𝑁3𝑑3). Here 𝑑 is the dimension and 𝑁 is the number of
bubbles. The most critical parameter is 𝑁, which corresponds roughly to the precision
of the discretization when considering arbitrary initial data. For any given function, the
higher 𝑁, the better we can approximate it as a sum of modulated Gaussian functions.
We then have a clear trade-off between the speed of the algorithm and the precision of
the discretization.

The algorithm for the nonlinear part makes use of the Dirac-Frenkel variational prin-
ciple, and it appears in practice that some inherent issue may arise. This issue makes
the results be very unsatisfying if the bubbles overlap at some point during the simula-
tion. If the bubbles do not present overlap, the Dirac-Frenkel principle works well. We
have to underline some limitations of the algorithm as presented here. First of all, the
discretization error has not been analyzed in detail, and this is crucial when studying the
error for arbitrary initial condition. A second limitation, probably the biggest issue, is
due to the Dirac-Frenkel principle, which displays the same issues as those observed when
it is applied in the linear setting: in order to obtain an approximate time-derivative, the
interactions |𝑢|2𝑢 need to be orthogonally projected onto some tangent space, and we use
an explicit basis of the tangent space in order to perform that projection. However, it
appears in practice that the family we use as a basis for the tangent space may not be
a basis and may present some linear dependences. In this case, the projection matrix in
the Dirac-Frenkel principle is very ill-conditioned or noninvertible, and this is the cause
of the main numerical issues observed. This situation occurs for example when two bub-
bles overlap too much, which happens in practice. It would be interesting to have some
procedure that allow overlaps, and maybe study the alternative used by [50] and see if
it applies to polynomial interactions. It would be interesting as well to perform an ex-
haustive numerical analysis, and in particular to study the error terms coming from the
Dirac-Frenkel principle. Another issue is that we do not allow here the number of bubbles
to grow and diminish with time.
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Part IV, Chapter IV-5 – Conclusions and perspectives

As a final note, we can say that the ideas presented here seem promising, but a lot of
work has to be made in order to improve them to the point that they are applicable in
most situations, with performance comparable to other state-of-the-art schemes.
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Miscellanenous
computations

Part IV

6 C
H

A
P

T
E

R

IV-6.1 Fourier transforms of Gaussians

For the sake of clarity, for 𝜉, 𝑎 ∈ ℝ𝑑 and 𝑧 ∈ ℂ, let

𝐸(𝜉, 𝑎, 𝑧) ∶= exp {−|𝜉|2 + 2𝑖𝑎 ⋅ 𝜉 − |𝑎|2

4𝑧
} = exp {−(𝜉 + 𝑖𝑎) ⋅ (𝜉 + 𝑖𝑎)

4𝑧
} .

Computation of ̂𝑓

We have

−𝑧|𝑥|2 + 𝑎 ⋅ 𝑥 = −𝑧 ∣𝑥 − 𝑎
2𝑧1

∣
2

− 𝑖𝑧2𝑎
𝑧1

⋅ 𝑥 + 𝑧|𝑎|2

4𝑧2
1

.

Recall the following usual properties on Fourier transform:

̂𝑓(𝑥 − 𝑎) = ̂𝑓(𝜉)𝑒−𝑖𝑎⋅𝜉, ̂𝑓𝑒−𝑖𝑎⋅𝑥 = ̂𝑓(𝜉 + 𝑎).

Let
𝑔(𝑥) = 𝑒−𝑧∣𝑥− 𝑎

2𝑧1
∣
2

,

then
̂𝑔(𝜉) = (𝜋

𝑧
)

𝑑
2 𝑒− |𝜉|2

4𝑧 − 𝑖𝑎⋅𝜉
2𝑧1

and
𝑓(𝑥) = 𝑔(𝑥)𝑒

− 𝑖𝑧2
𝑧1

𝑎⋅𝑥+ 𝑧|𝑎|2

4𝑧2
1 .
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Hence,

̂𝑓(𝜉) = 𝑒
𝑧|𝑎|2

4𝑧2
1 ̂𝑔 (𝜉 + 𝑧2

𝑧1
𝑎) = (𝜋

𝑧
)

𝑑
2 𝑒

𝑧|𝑎|2

4𝑧2
1 𝑒− 1

4𝑧 ∣𝜉+ 𝑧2
𝑧1

𝑎∣
2
− 𝑖𝑎

2𝑧1
⋅(𝜉+ 𝑧2

𝑧1
𝑎)

= (𝜋
𝑧

)
𝑑
2 𝑒

𝑧|𝑎|2

4𝑧2
1

− 1
4𝑧 (|𝜉|2+2 𝑧2

𝑧1
𝑎⋅𝜉+ 𝑧2

2
𝑧2

1
|𝑎|2)− 𝑖𝑎⋅𝜉

2𝑧1
− 𝑖|𝑎|2𝑧2

2𝑧2
1

= (𝜋
𝑧

)
𝑑
2 𝑒

− |𝜉|2
4𝑧 +(𝑎⋅𝜉)(− 𝑧2

2𝑧𝑧1
− 𝑖

2𝑧1
)+|𝑎|2( 𝑧

4𝑧2
1

− 𝑧2
2

4𝑧𝑧2
1

− 𝑖𝑧2
2𝑧2

1
)

= (𝜋
𝑧

)
𝑑
2 𝑒

− |𝜉|2
4𝑧 − 𝑎⋅𝜉

2𝑧𝑧1
[𝑧2+𝑖(𝑧1+𝑖𝑧2)]+ |𝑎|2

4𝑧𝑧2
1

[(𝑧1+𝑖𝑧2)2−𝑧2
2−2𝑖𝑧2(𝑧1+𝑖𝑧2)]

= (𝜋
𝑧

)
𝑑
2 𝑒− |𝜉|2

4𝑧 −𝑖 𝑎⋅𝜉
2𝑧 + |𝑎|2

4𝑧

= (𝜋
𝑧

)
𝑑
2 𝐸(𝜉, 𝑎, 𝑧).

Computation of 𝑥𝑓

𝑥𝑓(𝜉) = 𝑖∇𝜉
̂𝑓 = 𝑖∇𝜉 [(𝜋

𝑧
)

𝑑
2 𝐸(𝜉, 𝑎, 𝑧)] = 𝑖 (𝜋

𝑧
)

𝑑
2 𝐸(𝜉, 𝑎, 𝑧) [− 𝜉

2𝑧
− 𝑖𝑎

2𝑧
]

= −𝑖 (𝜋
𝑧

)
𝑑
2 𝜉 + 𝑖𝑎

2𝑧
𝐸(𝜉, 𝑎, 𝑧).

Computation of 𝑥2
𝑚𝑓, 𝑚 = 1, … , 𝑑

𝑥2
𝑚𝑓(𝜉) = 𝑖𝜕𝜉𝑚 (𝑥𝑓)

𝑚
= 𝑖𝜕𝜉𝑚 [−𝑖 (𝜋

𝑧
)

𝑑
2 (𝜉 + 𝑖𝑎)𝑚

2𝑧
𝐸(𝜉, 𝑎, 𝑧)]

= 1
2𝑧

(𝜋
𝑧

)
𝑑
2 [𝐸(𝜉, 𝑎, 𝑧) + (𝜉𝑚 + 𝑖𝑎𝑚) 𝐸(𝜉, 𝑎, 𝑧) (−𝜉𝑚

2𝑧
− 𝑖𝑎𝑚

2𝑧
)]

= 1
2𝑧

(𝜋
𝑧

)
𝑑
2 [1 − (𝜉𝑚 + 𝑖𝑎𝑚)2

2𝑧
] 𝐸(𝜉, 𝑎, 𝑧).
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Computation of ̂𝑥𝑚𝑥𝑛𝑓, 𝑚, 𝑛 = 1, … , 𝑑, 𝑛 ≠ 𝑚

̂𝑥𝑚𝑥𝑛𝑓(𝜉) = 𝑖𝜕𝜉𝑚 (𝑥𝑓)
𝑛

= 𝑖𝜕𝜉𝑚 [−𝑖 (𝜋
𝑧

)
𝑑
2 𝜉𝑛 + 𝑖𝑎𝑛

2𝑧
𝐸(𝜉, 𝑎, 𝑧)]

= 1
2𝑧

(𝜋
𝑧

)
𝑑
2 (𝜉𝑛 + 𝑖𝑎𝑛) [−𝜉𝑚 + 𝑖𝑎𝑚

2𝑧
] 𝐸(𝜉, 𝑎, 𝑧)

= − 1
4𝑧2 (𝜋

𝑧
)

𝑑
2 (𝜉𝑛 + 𝑖𝑎𝑛) (𝜉𝑚 + 𝑖𝑎𝑚) 𝐸(𝜉, 𝑎, 𝑧).

Computation of |̂𝑥|2𝑓

|̂𝑥|2𝑓(𝜉) = 𝑥2
1𝑓(𝜉) + ⋯ + 𝑥2

𝑑𝑓(𝜉)

= 1
2𝑧

(𝜋
𝑧

)
𝑑
2 [𝑑 − (𝜉1 + 𝑖𝑎1)2 + ⋯ + (𝜉𝑑 + 𝑖𝑎𝑑)2

2𝑧
] 𝐸(𝜉, 𝑎, 𝑧)

= 1
2𝑧

(𝜋
𝑧

)
𝑑
2 [𝑑 − |𝜉|2 + 2𝑖𝑎 ⋅ 𝜉 − |𝑎|2

2𝑧
] 𝐸(𝜉, 𝑎, 𝑧).

Computation of ̂𝑥𝑚|𝑥|2𝑓, 𝑚 = 1, … , 𝑑

̂𝑥𝑚|𝑥|2𝑓(𝜉)

= 𝑖𝜕𝜉𝑚 [|̂𝑥|2𝑓(𝜉)] = 𝑖𝜕𝜉𝑚 [ 1
2𝑧

(𝜋
𝑧

)
𝑑
2 (𝑑 − |𝜉|2 + 2𝑖𝑎 ⋅ 𝜉 − |𝑎|2

2𝑧
) 𝐸(𝜉, 𝑎, 𝑧)]

= 𝑖
2𝑧

(𝜋
𝑧

)
𝑑
2 [−2𝜉𝑚 + 𝑖𝑎𝑚

2𝑧
+ (𝑑 − |𝜉|2 + 2𝑖𝑎 ⋅ 𝜉 − |𝑎|2

2𝑧
) (−𝜉𝑚 + 𝑖𝑎𝑚

2𝑧
)] 𝐸(𝜉, 𝑎, 𝑧)

= − 𝑖
4𝑧2 (𝜋

𝑧
)

𝑑
2 (𝜉𝑚 + 𝑖𝑎𝑚) [𝑑 + 2 − |𝜉|2 + 2𝑖𝑎 ⋅ 𝜉 − |𝑎|2

2𝑧
] 𝐸(𝜉, 𝑎, 𝑧).
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Computation of 𝑥3
𝑚𝑓, 𝑚 = 1, … , 𝑑

𝑥3
𝑚𝑓(𝜉) = 𝑖𝜕𝜉𝑚 [𝑥2

𝑚𝑓(𝜉)] = 𝑖𝜕𝜉𝑚 [ 1
2𝑧

(𝜋
𝑧

)
𝑑
2 (1 − (𝜉𝑚 + 𝑖𝑎𝑚)2

2𝑧
) 𝐸(𝜉, 𝑎, 𝑧)]

= 𝑖
2𝑧

(𝜋
𝑧

)
𝑑
2 [−2𝜉𝑚 + 𝑖𝑎𝑚

2𝑧
+ (−𝜉𝑚 + 𝑖𝑎𝑚

2𝑧
) (1 − (𝜉𝑚 + 𝑖𝑎𝑚)2

2𝑧
)] 𝐸(𝜉, 𝑎, 𝑧)

= − 𝑖
4𝑧2 (𝜋

𝑧
)

𝑑
2 (𝜉𝑚 + 𝑖𝑎𝑚) [3 − (𝜉𝑚 + 𝑖𝑎𝑚)2

2𝑧
] 𝐸(𝜉, 𝑎, 𝑧)

= − 𝑖
4𝑧2 (𝜋

𝑧
)

𝑑
2 [3(𝜉𝑚 + 𝑖𝑎𝑚) − (𝜉𝑚 + 𝑖𝑎𝑚)3

2𝑧
] 𝐸(𝜉, 𝑎, 𝑧).

Computation of ̂𝑥𝑚𝑥2
𝑛𝑓, 𝑚, 𝑛 = 1, … , 𝑑, 𝑛 ≠ 𝑚

̂𝑥𝑚𝑥2
𝑛𝑓(𝜉) = 𝑖𝜕𝜉𝑚 (𝑥2

𝑛𝑓) = 𝑖𝜕𝜉𝑚 [ 1
2𝑧

(𝜋
𝑧

)
𝑑
2 (1 − (𝜉𝑛 + 𝑖𝑎𝑛)2

2𝑧
) 𝐸(𝜉, 𝑎, 𝑧)]

= − 𝑖
2𝑧

(𝜋
𝑧

)
𝑑
2 (1 − (𝜉𝑛 + 𝑖𝑎𝑛)2

2𝑧
) 𝜉𝑚 + 𝑖𝑎𝑚

2𝑧
𝐸(𝜉, 𝑎, 𝑧).

Computation of 𝑥4
𝑚𝑓, 𝑚 = 1, … , 𝑑

𝑥4
𝑚𝑓(𝜉)

= 𝑖𝜕𝜉𝑚 [𝑥3
𝑚𝑓(𝜉)] = 𝑖𝜕𝜉𝑚 [− 𝑖

4𝑧2 (𝜋
𝑧

)
𝑑
2 (3(𝜉𝑚 + 𝑖𝑎𝑚) − (𝜉𝑚 + 𝑖𝑎𝑚)3

2𝑧
) 𝐸(𝜉, 𝑎, 𝑧)]

= 1
4𝑧2 (𝜋

𝑧
)

𝑑
2 [3 − 3(𝜉 + 𝑖𝑎𝑚)2

2𝑧
+ (3(𝜉𝑚 + 𝑖𝑎𝑚) − (𝜉𝑚 + 𝑖𝑎𝑚)3

2𝑧
) (−𝜉𝑚 + 𝑖𝑎𝑚

2𝑧
)] 𝐸(𝜉, 𝑎, 𝑧)

= 1
4𝑧2 (𝜋

𝑧
)

𝑑
2 [3 − 6(𝜉𝑚 + 𝑖𝑎𝑚)2

2𝑧
+ (𝜉𝑚 + 𝑖𝑎𝑚)4

4𝑧2 ] 𝐸(𝜉, 𝑎, 𝑧).

212
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Computation of ̂𝑥2
𝑚𝑥2

𝑛𝑓, 𝑚 = 1, … , 𝑑, 𝑛 ≠ 𝑚

̂𝑥2
𝑚𝑥2

𝑛𝑓(𝜉) = 𝑖𝜕𝜉𝑚 ( ̂𝑥𝑚𝑥2
𝑛𝑓)

𝑛
= 𝑖𝜕𝜉𝑚 [− 𝑖

2𝑧
(𝜋

𝑧
)

𝑑
2 (1 − (𝜉𝑛 + 𝑖𝑎𝑛)2

2𝑧
) 𝜉𝑚 + 𝑖𝑎𝑚

2𝑧
𝐸(𝜉, 𝑎, 𝑧)]

= 1
4𝑧2 (𝜋

𝑧
)

𝑑
2 (1 − (𝜉𝑛 + 𝑖𝑎𝑛)2

2𝑧
) 𝜕𝜉𝑚 [(𝜉𝑚 + 𝑖𝑎𝑚)𝐸(𝜉, 𝑎, 𝑧)]

= 1
4𝑧2 (𝜋

𝑧
)

𝑑
2 (1 − (𝜉𝑛 + 𝑖𝑎𝑛)2

2𝑧
) (1 − (𝜉𝑚 + 𝑖𝑎𝑚)2

2𝑧
) 𝐸(𝜉, 𝑎, 𝑧).

IV-6.2 Computing the coefficients of the Dirac-Frenkel
linear system

Coefficients of the matrix A

Computation of ⟨𝑏𝑙,1, 𝑏𝑗,1⟩

⟨𝑏𝑙,1, 𝑏𝑗,1⟩ = 𝑒𝑖𝛾𝑙−𝑖𝛾𝑗 ∫
ℝ𝑑

𝑒𝑖𝐿𝑙𝛽𝑙⋅ 𝑥−𝑋𝑙
𝐿𝑙 −𝑖 𝐵𝑙

4 ∣ 𝑥−𝑋𝑙
𝐿𝑙 ∣

2

𝑒− 1
2 ∣ 𝑥−𝑋𝑙

𝐿𝑙 ∣
2

× 𝑒−𝑖𝐿𝑗𝛽𝑗⋅ 𝑥−𝑋𝑗
𝐿𝑗 +𝑖 𝐵𝑗

4 ∣ 𝑥−𝑋𝑗
𝐿𝑗 ∣

2

𝑒− 1
2 ∣ 𝑥−𝑋𝑗

𝐿𝑗 ∣
2

𝑑𝑥

= 𝑒𝑖(𝛾𝑙−𝛾𝑗) ∫
ℝ𝑑

𝑒𝑖𝛽𝑙⋅(𝑥−𝑋𝑙)−𝑖𝛽𝑗⋅(𝑥−𝑋𝑗)𝑒− 2+𝑖𝐵𝑙
4 ∣ 𝑥−𝑋𝑙

𝐿𝑙 ∣
2

𝑒− 2−𝑖𝐵𝑗
4 ∣ 𝑥−𝑋𝑗

𝐿𝑗 ∣
2

𝑑𝑥

= 𝑒𝑖(𝛾𝑙−𝛾𝑗)− 2+𝑖𝐵𝑙
4(𝐿𝑙)2

|𝑋𝑙|2− 2−𝑖𝐵𝑗
4(𝐿𝑗)2

|𝑋𝑗|2−𝑖𝛽𝑙⋅𝑋𝑙+𝑖𝛽𝑗⋅𝑋𝑗

× ∫
ℝ𝑑

𝑒𝑖(𝛽𝑙−𝛽𝑗)⋅𝑥𝑒− 2+𝑖𝐵𝑙
4(𝐿𝑙)2

(|𝑥|2−2𝑥⋅𝑋𝑙)𝑒− 2−𝑖𝐵𝑗
4(𝐿𝑗)2

(|𝑥|2−2𝑥⋅𝑋𝑗)𝑑𝑥

= 𝑒𝑖(𝛾𝑙−𝛾𝑗)− 2+𝑖𝐵𝑙
4(𝐿𝑙)2

|𝑋𝑙|2− 2−𝑖𝐵𝑗
4(𝐿𝑗)2

|𝑋𝑗|2−𝑖𝛽𝑙⋅𝑋𝑙+𝑖𝛽𝑗⋅𝑋𝑗

× ∫
ℝ𝑑

𝑒𝑖(𝛽𝑙−𝛽𝑗+ 𝐵𝑙
2(𝐿𝑙)2

𝑋𝑙− 𝐵𝑗
2(𝐿𝑗)2

𝑋𝑗)⋅𝑥𝑒𝑥⋅( 1
(𝐿𝑙)2

𝑋𝑙+ 1
(𝐿𝑗)2

𝑋𝑗)𝑒−( 2+𝑖𝐵𝑙
4(𝐿𝑙)2

+ 2−𝑖𝐵𝑗
4(𝐿𝑗)2

)|𝑥|2𝑑𝑥
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Let

∣
∣
∣
∣
∣
∣
∣
∣
∣

𝑧 ∶= 2 + 𝑖𝐵𝑙

4(𝐿𝑙)2 + 2 − 𝑖𝐵𝑗

4(𝐿𝑗)2 ,

𝑎 ∶= 𝑋𝑙

(𝐿𝑙)2 + 𝑋𝑗

(𝐿𝑗)2 ,

𝜉 ∶= 𝐵𝑗

2(𝐿𝑗)2 𝑋𝑗 + 𝛽𝑗 − 𝐵𝑙

2(𝐿𝑙)2 𝑋𝑙 − 𝛽𝑙,

𝐶 = exp {𝑖(𝛾𝑙 − 𝛾𝑗) − 2 + 𝑖𝐵𝑙

4(𝐿𝑙)2 |𝑋𝑙|2 − 2 − 𝑖𝐵𝑗

4(𝐿𝑗)2 |𝑋𝑗|2 − 𝑖𝛽𝑙 ⋅ 𝑋𝑙 + 𝑖𝛽𝑗 ⋅ 𝑋𝑗} ,

(IV-6.1)

and 𝑓(𝑥) ∶= 𝑒−𝑧|𝑥|2+𝑎⋅𝑥. Then

⟨𝑏𝑙,1, 𝑏𝑗,1⟩ = 𝐶 ∫
ℝ𝑑

𝑒−𝑖𝜉⋅𝑥𝑓(𝑥)𝑑𝑥 = 𝐶 ̂𝑓(𝜉)

Computation of ⟨𝑏𝑙,𝑛+1, 𝑏𝑗,1⟩, 1 ≤ 𝑛 ≤ 𝑑

⟨𝑏𝑙,𝑛+1, 𝑏𝑗,1⟩ = 𝐶 ∫
ℝ𝑑

(𝑥 − 𝑋𝑙)𝑛
𝐿𝑙 𝑒−𝑖𝜉⋅𝑥𝑓(𝑥)𝑑𝑥

= 𝐶
𝐿𝑙 (𝑥𝑓𝑛 − 𝑋𝑙

𝑛
̂𝑓) (𝜉)

Computation of ⟨𝑏𝑙,𝑑+2, 𝑏𝑗,1⟩

⟨𝑏𝑙,𝑑+2, 𝑏𝑗,1⟩ = 𝐶 ∫
ℝ𝑑

𝑒−𝑖𝜉⋅𝑥𝑓(𝑥)|𝑥 − 𝑋𝑙|2

(𝐿𝑙)2 𝑑𝑥

= 𝐶
(𝐿𝑙)2 ∫

ℝ𝑑

𝑒−𝑖𝜉⋅𝑥𝑓(𝑥) (|𝑥|2 − 2𝑥 ⋅ 𝑋𝑙 + |𝑋𝑙|2) 𝑑𝑥

= 𝐶
(𝐿𝑙)2 (|̂𝑥|2𝑓 − 2𝑋𝑙 ⋅ 𝑥𝑓 + |𝑋𝑙|2 ̂𝑓) (𝜉)
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Computation of ⟨𝑏𝑙,𝑛+1, 𝑏𝑗,𝑚+1⟩, 1 ≤ 𝑛, 𝑚 ≤ 𝑑

⟨𝑏𝑙,𝑛+1, 𝑏𝑗,𝑚+1⟩ = 𝐶 ∫
ℝ𝑑

𝑥𝑛 − 𝑋𝑙
𝑛

𝐿𝑙
𝑥𝑚 − 𝑋𝑗

𝑚

𝐿𝑗 𝑒−𝑖𝜉⋅𝑥𝑓(𝑥)𝑑𝑥

= 𝐶
𝐿𝑗𝐿𝑙 ∫

ℝ𝑑

(𝑥𝑛 − 𝑋𝑙
𝑛)(𝑥𝑚 − 𝑋𝑗

𝑚)𝑒−𝑖𝜉⋅𝑥𝑓(𝑥)𝑑𝑥

= 𝐶
𝐿𝑗𝐿𝑙 ∫

ℝ𝑑

[𝑥𝑛𝑥𝑚 − 𝑥𝑛𝑋𝑗
𝑚 − 𝑥𝑚𝑋𝑙

𝑛 + 𝑋𝑙
𝑛𝑋𝑗

𝑚]

× 𝑒−𝑖𝜉⋅𝑥𝑓(𝑥)𝑑𝑥

= 𝐶
𝐿𝑗𝐿𝑙 [ ̂𝑥𝑛𝑥𝑚𝑓 − 𝑋𝑙

𝑛𝑥𝑚𝑓 − 𝑋𝑗
𝑚𝑥𝑛𝑓 + 𝑋𝑙

𝑛𝑋𝑗
𝑚 ̂𝑓] (𝜉).

Computation of ⟨𝑏𝑙,𝑑+2, 𝑏𝑗,𝑚+1⟩, 1 ≤ 𝑚 ≤ 𝑑

⟨𝑏𝑙,𝑑+2, 𝑏𝑗,𝑚+1⟩

= 𝐶 ∫
ℝ𝑑

𝑒−𝑖𝜉⋅𝑥𝑒−𝑧|𝑥|2+𝑎⋅𝑥 |𝑥 − 𝑋𝑙|2

(𝐿𝑙)2
𝑥𝑚 − 𝑋𝑗

𝑚

𝐿𝑗 𝑑𝑥

= 𝐶
(𝐿𝑙)2𝐿𝑗 ∫

ℝ𝑑

𝑒−𝑖𝜉⋅𝑥𝑒−𝑧|𝑥|2+𝑎⋅𝑥 (|𝑥|2 − 2𝑥 ⋅ 𝑋𝑙 + |𝑋𝑙|2) (𝑥𝑚 − 𝑋𝑗
𝑚) 𝑑𝑥

= 𝐶
(𝐿𝑙)2𝐿𝑗 [ ̂𝑥𝑚|𝑥|2𝑓 − 2𝑋𝑙 ⋅ 𝑥𝑚𝑥𝑓 + |𝑋𝑙|2𝑥𝑚𝑓

−𝑋𝑗
𝑚 |̂𝑥|2𝑓 + 2𝑋𝑗

𝑚𝑋𝑙 ⋅ 𝑥𝑓 − |𝑋𝑙|2𝑋𝑗
𝑚 ̂𝑓] (𝜉).
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Computation of ⟨𝑏𝑙,𝑑+2, 𝑏𝑗,𝑑+2⟩

⟨𝑏𝑙,𝑑+2, 𝑏𝑗,𝑑+2⟩ = 𝐶 ∫
ℝ𝑑

𝑒−𝑖𝜉⋅𝑥𝑒−𝑧|𝑥|2+𝑎⋅𝑥 |𝑥 − 𝑋𝑙|2

(𝐿𝑙)2
|𝑥 − 𝑋𝑗|2

(𝐿𝑗)2 𝑑𝑥

= 𝐶
(𝐿𝑙)2(𝐿𝑗)2 ∫

ℝ𝑑

𝑒−𝑖𝜉⋅𝑥𝑒−𝑧|𝑥|2+𝑎⋅𝑥 (|𝑥|2 − 2𝑥 ⋅ 𝑋𝑙 + |𝑋𝑙|2)

× (|𝑥|2 − 2𝑥 ⋅ 𝑋𝑗 + |𝑋𝑗|2) 𝑑𝑥

= 𝐶
(𝐿𝑙)2(𝐿𝑗)2 ∫

ℝ𝑑

𝑒−𝑖𝜉⋅𝑥𝑒−𝑧|𝑥|2+𝑎⋅𝑥 (|𝑥|4 − 2|𝑥|2𝑥 ⋅ 𝑋𝑙 + |𝑋𝑙|2|𝑥|2

− 2(𝑥 ⋅ 𝑋𝑗)|𝑥|2 + 4(𝑥 ⋅ 𝑋𝑙)(𝑥 ⋅ 𝑋𝑗) − 2(𝑥 ⋅ 𝑋𝑗)|𝑋𝑙|2

+|𝑥|2|𝑋𝑗|2 − 2(𝑥 ⋅ 𝑋𝑙)|𝑋𝑗|2 + |𝑋𝑙|2|𝑋𝑗|2) 𝑑𝑥

= 𝐶
(𝐿𝑙)2(𝐿𝑗)2 [|̂𝑥|4𝑓 − 2(𝑋𝑙 + 𝑋𝑗) ⋅ ̂|𝑥|2𝑥𝑓 + (|𝑋𝑙|2 + |𝑋𝑗|2) |̂𝑥|2𝑓

+ 4 ̂(𝑥 ⋅ 𝑋𝑙)(𝑥 ⋅ 𝑋𝑗)𝑓 − 2 (|𝑋𝑙|2𝑋𝑗 + |𝑋𝑗|2𝑋𝑙) ⋅ 𝑥𝑓

+|𝑋𝑙|2|𝑋𝑗|2 ̂𝑓] (𝜉)

Moreover,

(𝑥 ⋅ 𝑋𝑙)(𝑥 ⋅ 𝑋𝑗) = (
𝑑

∑
𝑛=1

𝑥𝑛𝑋𝑙
𝑛) (

𝑑
∑
𝑚=1

𝑥𝑚𝑋𝑗
𝑚)

=
𝑑

∑
𝑛,𝑚=1

𝑋𝑙
𝑛𝑋𝑗

𝑚𝑥𝑛𝑥𝑚,

Hence

̂(𝑥 ⋅ 𝑋𝑙)(𝑥 ⋅ 𝑋𝑗)𝑓 =
𝑑

∑
𝑛,𝑚=1

𝑋𝑙
𝑛𝑋𝑗

𝑚 ̂𝑥𝑛𝑥𝑚𝑓.

Coefficients of the vector of interactions 𝑆

Computation of ⟨𝑢|𝑢|2, 𝑏𝑗,1⟩

⟨𝑢|𝑢|2, 𝑏𝑗,1⟩ = ∑
𝑘,𝑙,𝑚

𝐴𝑘𝐴𝑙𝐴𝑚

𝐿𝑘𝐿𝑙𝐿𝑚 ⟨𝑒𝑖Γ𝑘+𝑖Γ𝑙−𝑖Γ𝑚𝑒− |𝑦𝑘|2+|𝑦𝑙|2+|𝑦𝑚|2
2 , 𝑒𝑖Γ𝑗𝑒− 1

2 |𝑦𝑗|2⟩
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We recall the previously defined notations:

∣
∣
∣
∣

𝑦𝑘 = 𝑥 − 𝑋𝑘

𝐿𝑘 ,

Γ𝑘(𝑥) = 𝛾𝑘 + 𝛽𝑘 ⋅ (𝑥 − 𝑋𝑘) − 𝐵𝑘

4(𝐿𝑘)2 |𝑥 − 𝑋𝑘|2.

Then,

− 1
2

(|𝑦𝑘|2 + |𝑦𝑙|2 + |𝑦𝑚|2 + |𝑦𝑗|2) = − 1
2(𝐿𝑘)2 |𝑥 − 𝑋𝑘|2 − 1

2(𝐿𝑙)2 |𝑥 − 𝑋𝑙|2 − 1
2(𝐿𝑚)2 |𝑥 − 𝑋𝑚|2

− 1
2(𝐿𝑗)2 |𝑥 − 𝑋𝑗|2

= −1
2

( 1
(𝐿𝑘)2 + 1

(𝐿𝑙)2 + 1
(𝐿𝑚)2 + 1

(𝐿𝑗)2 ) |𝑥|2 + ( 1
(𝐿𝑘)2 𝑋𝑘 + 1

(𝐿𝑙)2 𝑋𝑙 + 1
(𝐿𝑚)2 𝑋𝑚 + 1

(𝐿𝑗)2 𝑋𝑗) ⋅ 𝑥

− 1
2

(|𝑋𝑘|2

(𝐿𝑘)2 + |𝑋𝑙|2

(𝐿𝑙)2 + |𝑋𝑚|2

(𝐿𝑚)2 + |𝑋𝑗|2

(𝐿𝑗)2 ) ,

and

(Γ𝑘 + Γ𝑙 − Γ𝑚 − Γ𝑗)

= 𝛾𝑘 + 𝛽𝑘 ⋅ (𝑥 − 𝑋𝑘) − 𝐵𝑘

4(𝐿𝑘)2 |𝑥 − 𝑋𝑘|2 + 𝛾𝑙 + 𝛽𝑙 ⋅ (𝑥 − 𝑋𝑙) − 𝐵𝑙

4(𝐿𝑙)2 |𝑥 − 𝑋𝑙|2

− 𝛾𝑚 − 𝛽𝑚 ⋅ (𝑥 − 𝑋𝑚) + 𝐵𝑚

4(𝐿𝑚)2 |𝑥 − 𝑋𝑚|2 − 𝛾𝑗 − 𝛽𝑗 ⋅ (𝑥 − 𝑋𝑗) + 𝐵𝑗

4(𝐿𝑗)2 |𝑥 − 𝑋𝑗|2

= (𝛾𝑘 + 𝛾𝑙 − 𝛾𝑚 − 𝛾𝑗) + (𝛽𝑗 ⋅ 𝑋𝑗 + 𝛽𝑚 ⋅ 𝑋𝑚 − 𝛽𝑙 ⋅ 𝑋𝑙 − 𝛽𝑘 ⋅ 𝑋𝑘)

− ( 𝐵𝑘

4(𝐿𝑘)2 |𝑋𝑘|2 + 𝐵𝑙

4(𝐿𝑙)2 |𝑋𝑙|2 − 𝐵𝑚

4(𝐿𝑚)2 |𝑋𝑚|2 − 𝐵𝑗

4(𝐿𝑗)2 |𝑋𝑗|2)

+ 𝑥 ⋅ (𝛽𝑘 + 𝛽𝑙 − 𝛽𝑚 − 𝛽𝑗 + 𝐵𝑘

2(𝐿𝑘)2 𝑋𝑘 + 𝐵𝑙

2(𝐿𝑙)2 𝑋𝑙 − 𝐵𝑚

2(𝐿𝑚)2 𝑋𝑚 − 𝐵𝑗

2(𝐿𝑗)2 𝑋𝑗)

− ( 𝐵𝑘

4(𝐿𝑘)2 + 𝐵𝑙

4(𝐿𝑙)2 − 𝐵𝑚

4(𝐿𝑚)2 − 𝐵𝑗

4(𝐿𝑗)2 ) |𝑥|2
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Define

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

𝐶Im ∶= exp {𝑖 (𝛾𝑘 + 𝛾𝑙 − 𝛾𝑚 − 𝛾𝑗)}

× exp {𝑖 (𝛽𝑗 ⋅ 𝑋𝑗 + 𝛽𝑚 ⋅ 𝑋𝑚 − 𝛽𝑙 ⋅ 𝑋𝑙 − 𝛽𝑘 ⋅ 𝑋𝑘)}

× exp {−𝑖 ( 𝐵𝑘

4(𝐿𝑘)2 |𝑋𝑘|2 + 𝐵𝑙

4(𝐿𝑙)2 |𝑋𝑙|2 − 𝐵𝑚

4(𝐿𝑚)2 |𝑋𝑚|2 − 𝐵𝑗

4(𝐿𝑗)2 |𝑋𝑗|2)}

𝐶Re ∶= exp {−1
2

(|𝑋𝑘|2

(𝐿𝑘)2 + |𝑋𝑙|2

(𝐿𝑙)2 + |𝑋𝑚|2

(𝐿𝑚)2 + |𝑋𝑗|2

(𝐿𝑗)2 )}

𝐶 ∶= 𝐴𝑘𝐴𝑙𝐴𝑚

𝐿𝑘𝐿𝑙𝐿𝑚 𝐶Im 𝐶Re

𝜉 ∶= − [𝛽𝑘 + 𝛽𝑙 − 𝛽𝑚 − 𝛽𝑗 + 𝐵𝑘

2(𝐿𝑘)2 𝑋𝑘 + 𝐵𝑙

2(𝐿𝑙)2 𝑋𝑙 − 𝐵𝑚

2(𝐿𝑚)2 𝑋𝑚 − 𝐵𝑗

2(𝐿𝑗)2 𝑋𝑗]

𝑧 ∶= 1
2

( 1
(𝐿𝑘)2 + 1

(𝐿𝑙)2 + 1
(𝐿𝑚)2 + 1

(𝐿𝑗)2 ) + 𝑖 ( 𝐵𝑘

4(𝐿𝑘)2 + 𝐵𝑙

4(𝐿𝑙)2 − 𝐵𝑚

4(𝐿𝑚)2 − 𝐵𝑗

4(𝐿𝑗)2 )

𝑎 ∶= 1
(𝐿𝑘)2 𝑋𝑘 + 1

(𝐿𝑙)2 𝑋𝑙 + 1
(𝐿𝑚)2 𝑋𝑚 + 1

(𝐿𝑗)2 𝑋𝑗

and 𝑓(𝑥) ∶= 𝑒−𝑧|𝑥|2+𝑎⋅𝑥. Then

⟨𝑢|𝑢|2, 𝑏𝑗,1⟩ = ∑
𝑘,𝑙,𝑚

𝐶 ̂𝑓(𝜉). (IV-6.2)

Computation of ⟨𝑢|𝑢|2, 𝑏𝑗,𝑟+1⟩, 𝑟 = 1, … , 𝑑

⟨𝑢|𝑢|2, 𝑏𝑗,𝑟+1⟩

= ∑
𝑘,𝑙,𝑚

𝐴𝑘𝐴𝑙𝐴𝑚

𝐿𝑘𝐿𝑙𝐿𝑚 ⟨𝑒𝑖Γ𝑘+𝑖Γ𝑙−𝑖Γ𝑚𝑒− |𝑦𝑘|2+|𝑦𝑙|2+|𝑦𝑚|2
2 , 𝑒𝑖Γ𝑗𝑒− 1

2 |𝑦𝑗|2 𝑥𝑟 − 𝑋𝑗
𝑟

𝐿𝑗 ⟩

= ∑
𝑘,𝑙,𝑚

𝐶
𝐿𝑗 (𝑥𝑟𝑓 − 𝑋𝑗

𝑟 ̂𝑓) .
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Computation of ⟨𝑢|𝑢|2, 𝑏𝑗,𝑑+2⟩

⟨𝑢|𝑢|2, 𝑏𝑗,𝑑+2⟩

= ∑
𝑘,𝑙,𝑚

𝐴𝑘𝐴𝑙𝐴𝑚

𝐿𝑘𝐿𝑙𝐿𝑚 ⟨𝑒𝑖Γ𝑘+𝑖Γ𝑙−𝑖Γ𝑚𝑒− |𝑦𝑘|2+|𝑦𝑙|2+|𝑦𝑚|2
2 , 𝑒𝑖Γ𝑗𝑒− 1

2 |𝑦𝑗|2 ∣𝑥 − 𝑋𝑗

𝐿𝑗 ∣
2

⟩

= ∑
𝑘,𝑙,𝑚

𝐶
(𝐿𝑗)2 (|̂𝑥|2𝑓 − 2𝑋𝑗 ⋅ 𝑥𝑓 + |𝑋𝑗|2 ̂𝑓) .

IV-6.3 Conservative quantities in dimension 𝑑 = 2

We provide in this section some miscellaneous computations, which hold in dimension
𝑑 = 2 as long as 𝑣𝑗(𝑠𝑗, 𝑦𝑗) = 𝑒−

|𝑦𝑗|2

2 , 𝑗 = 1, … , 𝑁. We give the explicit expressions for the
conserved quantities involved in Lemma IV.2, in the two-dimensional case.

The 𝕃2 norm of a sum of 𝑁 bubbles is given by

‖𝑢‖2
𝕃2 =

𝑁
∑

𝑘,𝑙=1

𝐴𝑘𝐴𝑙

𝐿𝑘𝐿𝑙 ⟨𝑏𝑘,1, 𝑏𝑙,1⟩.

The energy of a sum of bubbles is given by

𝐸𝜇,𝜆 = 𝜇
2

⟨−Δ𝑢 + |𝑥|2𝑢, 𝑢⟩ + 𝜆
4

⟨|𝑢|2𝑢, 𝑢⟩ = 𝐸𝜇,0 + 𝐸0,𝜆 = 𝜇𝐸1,0 + 𝜆𝐸0,1.

We have

2𝐸1,0 = ⟨𝐻𝑢, 𝑢⟩ = ⟨−Δ𝑢, 𝑢⟩ + ⟨|𝑥|2𝑢, 𝑢⟩ =
𝑁

∑
𝑗,𝑘=1

⟨∇𝑥𝑢𝑗, ∇𝑥𝑢𝑘⟩ +
𝑁

∑
𝑗,𝑘=1

⟨|𝑥|2𝑢𝑗, 𝑢𝑘⟩.

Furthermore,

⟨∇𝑥𝑢𝑗, ∇𝑥𝑢𝑘⟩ = 𝐴𝑗𝐴𝑘

𝐿𝑗𝐿𝑘 ⟨(𝑖𝛽𝑗 − 2 + 𝑖𝐵𝑗

2𝐿𝑗 𝑦𝑗) 𝑏𝑗,1, (𝑖𝛽𝑘 − 2 + 𝑖𝐵𝑘

2𝐿𝑘 𝑦𝑘) 𝑏𝑘,1⟩

= 𝐴𝑗𝐴𝑘

𝐿𝑗𝐿𝑘 {𝛽𝑗 ⋅ 𝛽𝑘 ⟨𝑏𝑗,1, 𝑏𝑘,1⟩ + 𝑖2 + 𝑖𝐵𝑗

2𝐿𝑗 𝛽𝑘 ⋅ (
⟨𝑏𝑗,2, 𝑏𝑘,1⟩
⟨𝑏𝑗,3, 𝑏𝑘,1⟩

)

− 𝑖2 − 𝑖𝐵𝑘

2𝐿𝑘 𝛽𝑗 ⋅ (
⟨𝑏𝑗,1, 𝑏𝑘,2⟩
⟨𝑏𝑗,1, 𝑏𝑘,3⟩

)

+2 + 𝑖𝐵𝑗

2𝐿𝑗
2 − 𝑖𝐵𝑘

2𝐿𝑘 (⟨𝑏𝑗,2, 𝑏𝑘,2⟩ + ⟨𝑏𝑗,3, 𝑏𝑘,3⟩)} ,
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and

⟨|𝑥|2𝑢𝑗, 𝑢𝑘⟩ = 𝐴𝑗𝐴𝑘

𝐿𝑗𝐿𝑘 ⟨((𝐿𝑗)2|𝑦𝑗|2 + 2𝐿𝑗𝑦𝑗 ⋅ 𝑋𝑗 + |𝑋𝑗|2) 𝑏𝑗,1, 𝑏𝑘,1⟩

= 𝐴𝑗𝐴𝑘

𝐿𝑗𝐿𝑘 {(𝐿𝑗)2⟨𝑏𝑗,4, 𝑏𝑘,1⟩ + 2𝐿𝑗𝑋𝑗 ⋅ (
⟨𝑏𝑗,2, 𝑏𝑘,1⟩
⟨𝑏𝑗,3, 𝑏𝑘,1⟩

) + |𝑋𝑗|2⟨𝑏𝑗,1, 𝑏𝑘,1⟩} .

We also have

𝐸0,1 = ⟨𝑢|𝑢|2, 𝑢⟩ =
𝑁

∑
𝑗=1

𝐴𝑗

𝐿𝑗 ⟨𝑢|𝑢|2, 𝑏𝑗,1⟩.

We now proceed to computing the momentum, given by

𝑀𝜇,𝜆 = (𝐸𝜇,𝜆 − 𝜇‖𝑥𝑢‖2
𝕃2)2 + 𝜇2 (Im ∫ 𝑥 ⋅ ∇𝑢�̄�)

2
.

We know how to compute 𝐸𝜇,𝜆 from previously, as well as ‖𝑥𝑢‖2
𝕃2 = ⟨|𝑥|2𝑢, 𝑢⟩. It only

remains to compute

∫ 𝑥 ⋅ ∇𝑢�̄� =
𝑁

∑
𝑗,𝑘=1

𝐴𝑗𝐴𝑘

𝐿𝑗𝐿𝑘 ⟨(𝐿𝑗𝑦𝑗 + 𝑋𝑗) ⋅ (𝑖𝛽𝑗 − 2 + 𝑖𝐵𝑗

2𝐿𝑗 𝑦𝑗) 𝑏𝑗,1, 𝑏𝑘,1⟩

=
𝑁

∑
𝑗,𝑘=1

𝐴𝑗𝐴𝑘

𝐿𝑗𝐿𝑘 {𝑖𝐿𝑗𝛽𝑗 ⋅ (
⟨𝑏𝑗,2, 𝑏𝑘,1⟩
⟨𝑏𝑗,3, 𝑏𝑘,1⟩

) − 2 + 𝑖𝐵𝑗

2
⟨𝑏𝑗,4, 𝑏𝑘,1⟩

+𝑖𝛽𝑗 ⋅ 𝑋𝑗 ⟨𝑏𝑗,1, 𝑏𝑘,1⟩ − 2 + 𝑖𝐵𝑗

2𝐿𝑗 𝑋𝑗 ⋅ (
⟨𝑏𝑗,2, 𝑏𝑘,1⟩
⟨𝑏𝑗,3, 𝑏𝑘,1⟩

)} .

Note that all the inner products involved have already been computed when creating
the matrix associated to the Dirac-Frenkel principle, see Section IV-4.2.1.
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Part V
C

H
A

P
T

E
R 1 Motivation

For once, mathematical work can be motivated by a real-life example
🎉

Imagine Alice wants to record a voice memo for her friend Bob. She will take out her
smartphone or any voice recorder she has available, start the recording, and then talk.
Once she is finished talking, she stops the recording.

The recorder’s microphone has recorded a human voice for a few seconds, or minutes.
The signal is virtually zero before she started talking, and zero after she finished. Any
mathematician or physicist would approximate this signal using a compactly supported
function, very originally named 𝑓. Moreover, the frequencies of a human voice typically
range from a few tens to a few hundreds of Hertz. These frequencies correspond to the
Fourier transform 1 of the function 𝑓.

The function 𝑓 would then be a compactly supported function whose Fourier transform
is also compactly supported. This means 2 that the function 𝑓 has to be zero, meaning
Alice actually produced no sound, but she did!

The Fourier transform is not suited to deal with this particular type of functions –
compactly supported in both space and frequencies – even though it is a very powerful
tool used every day to handle signals and telecommunications.

In the 1960s, D. Slepian, H. J. Landau, and H. O. Pollak asked something along the
lines of: A function cannot be compactly supported in both domains. What if we look for
functions that are compactly supported in one domain, and among all of them take the
one that is the «most concentrated» in the other domain? They then answered in a very
convincing and efficient manner to this problem in a series of five papers [46, 29, 30, 47,
45]. However, their framework is quite constraining and one may want to generalize those
results.

It will be our aim in this Part of the manuscript to give some elements towards the

1. Any person with a maths background will eventually ask “In what space lies 𝑓? In the Fourier trans-
form well-defined on this space?” These are legitimate questions, but we are also only in the introductory
example...

2. [22, Theorem 7.1.14]: The Fourier transform ̂𝑓 of a distribution 𝑓 ∈ 𝒟′(ℝ𝑑) with compact support
is an entire analytic function over ℂ𝑑. Moreover, [41, Proposition 10.23]: Every bounded entire function
is constant. If ̂𝑓, an entire function, was compactly supported it would be bounded and hence constant.
Moreover this constant would be zero: ̂𝑓 being compactly supported means ̂𝑓(𝑧) = 0 for |𝑧| > 𝑅, 𝑅 > 0
large enough, and ̂𝑓 being constant means in particular ̂𝑓 ≡ ̂𝑓(2𝑅) = 0.
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generalization of the problem and its answer.

David Slepian
(1923–2007). Credit
to itsoc.org.

In Chapter V-2, we start by giving some more details and a
precise formulation of the Spectral Concentration Problem. We will
then explain the “very convincing and efficient” solution proposed
by Slepian et al. After this, we give an overview of the literature
treating the spectral concentration problem. We will see that most
works remain very close to the framework Slepian et al. studied,
and even by taking this into account, the problem is not well un-
derstood nor is Slepian’s answer. It looks like the elegant answer he
proposed is just an accident, which could not have been reproduced
in other situations. We will also discuss why the problem is difficult
to solve from the numerical point of view, and more specifically
why a straightforward, direct, brute-force solution is not satisfying.

Chapter V-3 is dedicated to presenting very briefly the Pro-
late Spheroidal Wave Functions, which are essential to the elegant solution proposed by
Slepian.

We then proceed in Chapter V-4 to propose a generalized formulation of the spectral
concentration problem. In particular, we will see that the problem Slepian et al. considered
can be recovered from this generalized problem. We give some basic properties about this
situation, and then derive the discrete formulation of the problem. We will see that the
discrete problem as considered by Slepian in [45] is recovered by our discrete framework.

Now that we have set up our theoretical foundations, we can try to solve the spectral
concentration problem in Chapter V-5. We were not able to do much from the theoretical
point of view, but we were able to find an algorithm that bypasses the limitations one
usually encounters in the discrete setting. Even though we do not recover exactly the
same eigenvectors as those of Slepian et al., they are qualitatively satisfying, obtained in
a deterministic way, and most importantly they are guaranteed to be a good approxima-
tion of the true solutions we were looking for. We then proceed to solving the spectral
concentration problems in previously unstudied situations. To the author’s knowledge, the
numerical procedure proposed is the only existing way to solve the generalized spectral
concentration problem without suffering from the issues we will have discussed.

Remark V.1

The algorithm is devised here in the context of the spectral concentration problem,
but one could see it in a more general way: given a matrix with simple eigenvalues
very close together, how to recover the associated eigenvectors without confusing them
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Part V, Chapter V-1 – Motivation

numerically? The confusion is due to the eigenvalues being too close to each other,
we’ll explain that in more details later. One possible answer to this question is the
procedure we will describe in Chapter V-5, which allows one to recover approximately
the eigenvectors with no confusion.
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Review of the spectral
concentration problem

Part V

2 C
H

A
P

T
E

R

V-2.1 The Slepian “toy model”

The (continuous) Slepian Concentration Problem, as it was first formulated in [46],
consists in looking for functions 𝑓 ∈ 𝕃2(ℝ), ‖𝑓‖𝕃2(ℝ) = 1, having a Fourier transform with
compact support in [−Ω, Ω], which have the largest 𝕃2([−𝑇 , 𝑇 ]) norm, for some 𝑇 , Ω > 0.

This simultaneous space-frequency localization problem is obviously linked to Heisen-
berg’s Uncertainty principle, and the link is discussed in [29].

A function 𝑓 ∈ 𝕃2(ℝ) having the support of its Fourier transform ̂𝑓 in [−Ω, Ω] can be
written

𝑓(𝑥) = 1
2𝜋

∫
Ω

−Ω

̂𝑓(𝜉)𝑒𝑖𝜉⋅𝑥𝑑𝜉.

This simply comes from the usual inverse Fourier transform, and using the compact sup-
port of ̂𝑓: ̂𝑓|(−∞,−Ω)∪(Ω,+∞) = 0 almost everywhere. The 𝕃2([−𝑇 , 𝑇 ]) norm of such function
is then given as

‖𝑓‖2
𝕃2([−𝑇 ,𝑇 ]) = 1

4𝜋2 ∫
𝑇

−𝑇
(∫

Ω

−Ω

̂𝑓(𝜉)𝑒𝑖𝜉⋅𝑥𝑑𝜉) (∫
Ω

−Ω

̂𝑓(𝜂)𝑒𝑖𝜂⋅𝑥𝑑𝜂)𝑑𝑥

= 1
4𝜋2 ∫

Ω

−Ω
∫

Ω

−Ω

̂𝑓(𝜉) ̂𝑓(𝜂) (∫
𝑇

−𝑇
𝑒𝑖(𝜉−𝜂)𝑥𝑑𝑥) 𝑑𝜂𝑑𝜉

= 1
4𝜋2 ∫

Ω

−Ω
∫

Ω

−Ω

̂𝑓(𝜉) ̂𝑓(𝜂)𝑒𝑖𝑇 (𝜉−𝜂) − 𝑒−𝑖𝑇 (𝜉−𝜂)

𝑖(𝜉 − 𝜂)
𝑑𝜂𝑑𝜉

= 1
2𝜋

∫
Ω

−Ω
∫

Ω

−Ω

̂𝑓(𝜉) ̂𝑓(𝜂)sin (𝑇 (𝜉 − 𝜂))
𝜋(𝜉 − 𝜂)

𝑑𝜂𝑑𝜉

= Ω2

2𝜋
∫

1

−1
∫

1

−1

̂𝑓(𝜉) ̂𝑓(𝜂)sin (Ω𝑇 (𝜉 − 𝜂))
𝜋(𝜉 − 𝜂)

𝑑𝜂𝑑𝜉. (V-2.1)

Finally, the functions 𝑓 ∈ 𝕃2(ℝ) we are looking for must maximize the quantity given by
(V-2.1). It can be shown 1 that the 𝕃2(ℝ) function of norm 1 maximizing (V-2.1) is an

1. The derivation for the general case will be done later in Section V-4 – Generalized framework.
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eigenfunction 𝜓1 of the operator

𝑔 ↦ (𝒦𝑔)(𝑥) ∶= ∫
1

−1
𝑔(𝑦)sin (Ω𝑇 (𝑦 − 𝑥))

𝜋(𝑦 − 𝑥)
𝑑𝑦, (V-2.2)

associated to the eigenvalue 𝜆1 of largest magnitude. Moreover, there exists 2 a countable
infinity of eigenpairs (𝜆𝑖, 𝜓𝑖) with real eigenvalues for the operator 𝒦, and one can order
them according to the magnitude of eigenvalues:

1 > 𝜆1 > 𝜆2 > ⋯ > 𝜆𝑘 > ⋯ > 0

Remark V.2: Vocabulary

The operator 𝒦 from (V-2.2), and later its generalization (V-4.5), will be called the
concentration operator. The eigenvalues 𝜆𝑖 are called the concentration ratios, since
they measure how well the eigenvector 𝜓𝑖 is concentrated in both Fourier and space
domains. The name “ratio” is inspired from [46, p. 55], where the highest eigenvalue
𝜆1 was defined as the ratio of the 𝕃2 norm of the concentrated function and the 𝕃2

norm of the unrestricted function:

𝜆1 ∶=
‖𝒦𝑔‖𝕃2([−𝑇 ,𝑇 ])

‖𝑔‖𝕃2(ℝ)
.

It is actually a consequence of 𝜆1 being an eigenvalue of the concentration operator
𝒦. Finally, we may refer to the eigenfunctions 𝜓𝑖 as Slepian modes.

It happens that approximately the first ⌊ 2
𝜋Ω𝑇⌋ + 1 eigenvalues are all close to one,

followed by a few eigenvalues which are far from one and zero, and then there are infinitely
many eigenvalues close to zero. This phenomenon was first studied in [30]. The number of
eigenvalues between zero and one in the discrete setting (i.e. [−𝑇 , 𝑇 ] is discretized using 𝑁
uniformly spaced points) has also been studied, and [24] is the first work to have derived
a bound that depends on the product 𝑁Ω.

The behavior of the eigenvalues is very interesting from the applied mathematical
point of view: indeed, if one decides to use the so-called Slepian basis {𝜓𝑖}𝑖≥1 made of the
eigenfunctions of 𝒦, then in practice only the eigenfunctions corresponding to eigenvalues
far from zero are useful. The eigenvalues close to zero carry almost no information. It gives
a natural threshold on where to truncate the Slepian basis, and this is very different from
other usual basis (e.g. Hermite or Fourier). This is one of the reasons why the Slepian

2. Also shown in the generalized setting.
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basis is interesting, and probably why it deserves some attention.

We will refer to the above case as the “toy model”. This is not to undermine of the
work of D. Slepian, H. J. Landau and H. O. Pollak, but only to convey the fact that this
problem is known relatively well, and that this is the problem upon which we shall build
the generalized theory in Section V-4 – Generalized framework.

V-2.2 Known results

The toy model was studied in detail by D. Slepian and H. O. Pollak in [46], who,
in particular, showed that the eigenfunctions of 𝒦 are orthogonal and complete in both
spaces 𝕃2(ℝ) and 𝕃2([−𝑇 , 𝑇 ]). This is also the first account of the commuting property
between a certain differential operator 𝒫 and the kernel operator 𝒦. More specifically, it
was shown that the differential operator

𝒫(𝑥, 𝜕𝑥) ∶= 𝑑
𝑑𝑥

(1 − 𝑥2) 𝑑
𝑑𝑥

− 𝑐2𝑥2 (V-2.3)

commutes with the integral operator 𝒦 defined in (V-2.2), where 𝑐 is a multiple of the
product Ω𝑇. The eigenfunctions of 𝒫 were known before D. Slepian realized this connec-
tion, and are called Prolate Spheroidal Wave Functions 3. They are studied for instance
in [11, 26, 35, 32, 50], and as early as 1880 [33]. We present them briefly in Chapter V-3
– Prolate spheroidal wave functions.

The interesting fact about this commutation is that it allows one to look for eigen-
functions of 𝒦 by looking for eigenfunctions of 𝒫:

Lemma V.1

Let 𝐴, 𝐵 ∶ 𝕃2(ℝ𝑑) → 𝕃2(ℝ𝑑) two commuting operators acting on 𝕃2(ℝ𝑑), that is
𝐴𝐵 = 𝐵𝐴. Suppose that each eigenfunction 𝜑𝑖 of 𝐴 is associated to an eigenvalue 𝜅𝑖

of multiplicity one, and that Span {𝜑𝑖 ∶ 𝑖 ∈ ℕ} = 𝕃2(ℝ𝑑). Then 𝐴 and 𝐵 have the
same eigenfunctions.

Proof. Using the commutation relation between 𝐴 and 𝐵, one obtains

𝐴𝜑𝑖 = 𝜅𝑖𝜑𝑖 ⟹ 𝐵𝐴𝜑𝑖 = 𝜅𝑖𝐵𝜑𝑖 ⟹ 𝐴𝐵𝜑𝑖 = 𝜅𝑖𝐵𝜑𝑖.

This means that 𝐵𝜑𝑖 also is an eigenfunction of 𝐴, and since 𝜅𝑖 is an eigenvalue of

3. Not to be confused with “prolapse”, which is a totally different subject…
🤡
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multiplicity one we must have 𝐵𝜑𝑖 = 𝑐𝜑𝑖 for some constant 𝑐 ∈ ℂ. In other words, all
eigenfunctions of 𝐴 are eigenfunctions of 𝐵. Moreover, since the eigenfunctions of 𝐴 form
a complete family of 𝕃2(ℝ𝑑), we deduce that the eigenfunctions of 𝐵 are exactly the
eigenfunctions of 𝐴.

Then, [30] quickly followed, which showed how well an arbitrary 𝕃2(ℝ) function can
be approximated using the first ⌊ 2

𝜋Ω𝑇 ⌋ eigenfunctions of 𝒦, and in what sense this basis
is better than “sampling functions” of the form 𝑡 ↦ sinc (2𝑊𝑡 − 𝑟).

Thus far, Slepian, Landau and Pollak studied the continuous, one-dimensional case [46,
29, 30]. A main component for the study of so-called Slepian modes – the eigenfunctions
of the integral operator 𝒦 – is the commutation property with a differential operator,
which is a priori unexpected.

“
”D. Slepian (1983)

There was a lot of serendipity here, clearly. And then our solution,
too, seemed to hinge on a lucky accident […]

This “lucky accident” is precisely the commutation property.

The continuous 2-dimensional case was then studied in [47], and it was shown that
there also exists a differential operator commuting with the multi-dimensionl counterpart
of the integral operator. For this 2-dimensional case, the Fourier domain is restricted to
𝐵(0, 1) and the space domain is restricted to 𝐵(0, 𝑐) for 𝑐 > 0. We denote by 𝐵(𝑥0, 𝑟) the
2-dimensional ball centered at 𝑥0 ∈ ℝ𝑑 of radius 𝑟 > 0. The multidimensional counterpart
of the operator 𝒫 writes

𝒫dim 2(𝑟, 𝜕𝑟) = 𝑑
𝑑𝑟

(1 − 𝑟2) 𝑑
𝑑𝑟

− (𝑐2𝑟2 +
1
4 − 𝑁2

𝑟2 ) , (V-2.4)

and applies to radial functions. The quantity 𝑁 denotes an integer, and for each 𝑁 there
exists an orthonormal family of eigenfunctions of the concentration operator. In polar
coordinates, they write

{𝑅𝑁,𝑛(𝑟) cos(𝑁𝜃)}
𝑛∈ℕ

∪ {𝑅𝑁,𝑛(𝑟) sin(𝑁𝜃)}
𝑛∈ℕ

,

where 𝑅𝑁,𝑛 is the 𝑛-th eigenfunction of 𝒫dim 2. The work [47] is achieved by treating
the general 𝑑-dimensional case in a very similar fashion (just replace 𝑁 by 𝑁 + 𝑑−2

2 in
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(V-2.4)).
Finally, the Slepian-Landau-Pollak series of five papers was achieved a few years later

with [45], which treated the discrete-space continuous-Fourier case. In this situation, there
exists as well a second-order differential operator which commutes with the discrete-space
continuous-Fourier operator.

However, all the studies so far used the integral kernel 𝒦 given in (V-2.2), or its higher-
dimensional counterpart. There is a lot of symmetry involved in considering unit balls in
both space and Fourier domains, and one can wonder if such commutation property holds
with other domains of restrictions 4. In Section V-2.2.4 – Alternative way to recover the
differential operator, we give a new way to obtain the commuting differential operator in
the cases for which it is already known. Unfortunately, neither old nor new approaches
seem to be applicable to other geometries, and the profound reason why it does not work
remains mysterious.

Of course, other authors have worked on this subject since the 1960s. We give below a
few references on generalizations to the Spectral Concentration Problem, but few of them
treats our main concern, which are the eigenfunctions in the generalized case, with the
generalized kernel given by (V-4.5). The work closest to our concerns is by Grünbaum
[14], but unfortunately he was unable to exhibit an elegant 5 solution like in the toy
model. Among all works we are aware of, perhaps the result furthest away from Slepian’s
framework but with an equally interesting solution is due to Brander and DeFacio [4], who
studied the case where the space and Fourier restrictions are Gaussian functions instead
of indicator functions.

In addition to its very interesting mathematical study, the spectral concentration
problem has been used in several other fields of science. We refer to [44] and the references
therein for a large variety of examples of applications.

V-2.2.1 One-dimensional works

One of the first attemps at extending the results from Slepian to other examples in
1D is due to Grünbaum [15]. It is shown that, if 𝑘 = ℱ−1[𝜇], with 𝜇 an even Lebesgue
integrable nonnegative function with compact support, then second- or fourth-order dif-
ferential operators can be found to commute with the integral operator

(𝒦𝑓)(𝑥) = ∫
1

−1
𝑘(𝑥 − 𝑦)𝑓(𝑦)𝑑𝑦,

4. When 𝑑 = 2, the case of a disc in space and Fourier was studied, but what if we wanted to restrict
the function in space to a cat-head shape and in Fourier to a duck-head shape?

5. Elegant means here the existence of a commuting differential operator.
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only if 𝑘(𝑥) = sinc (Ω𝑥), up to some multiplicative constant. In other words, the Fourier
restriction can only be (up to a multiplicative constant) the indicator function of an
interval if one wants to find a commuting operator. The assumptions on 𝜇 are stronger
than those from a previous, unpublished result by Morrison, cited in [52] and [13, p. 119]:

Theorem V.1: Morrison (1962)

For any constants 𝑏 and 𝑐, the eigenfunctions of the integral operator on 𝕃2(−1, 1)
with kernel

𝑏 sin 𝑐(𝑥 − 𝑦)
𝑐 sinh 𝑏(𝑥 − 𝑦)

are the eigenfunctions of the differential operator

𝑑
𝑑𝑥

(1 − sinh2 𝑏𝑥
sinh2 𝑏

) 𝑑
𝑑𝑥

− (𝑏2 + 𝑐2)sinh2 𝑏𝑥
sinh2 𝑏

,

where the eigenfunctions are required to be continuous at 𝑥 = ±1.

The characterization of the “admissible pairs” of integral and differential operators
has recently been extended to the complex case in [12]. They obtain the following result:

Theorem V.2: Grabovsky, Hovspeyan (2021)

Let 𝐾 and 𝐿 be given by

(𝐾𝑢)(𝑥) = ∫
1

−1
𝑘(𝑥−𝑦)𝑢(𝑦)𝑑𝑦, 𝐿𝑢 = −𝑎𝑢″+𝑏𝑢′+𝑐𝑢, 𝑎(±1) = 0, 𝑏(±1) = 𝑎′(±1),

with 𝑎, 𝑏, 𝑐 smooth in [−2, 2]. Assume 𝑘 is smooth in [−2, 2] \ {0} and either:

1. 𝑘 is analytic at 0, not identically zero near 0, and cannot be written as a finite
linear combination of exponentials 𝑒𝛼𝑧 or be written under the form 𝑒𝛼𝑧𝑝(𝑧),
with 𝑝 polynomial;

2. 𝑘 has a simple pole at 0.

If 𝐾𝐿 = 𝐿𝐾, then

𝑘(𝑧) = 𝜆
sinh (𝜆

2 𝑧)
(𝛼1

sinh(𝜇𝑧)
𝜇

+ 𝛼2 cosh(𝜇𝑧)) .
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and
⎧{{{
⎨{{{⎩

𝑎(𝑦) = 1
𝜆2 [cosh(𝜆𝑦) − cosh(𝜆)] ,

𝑏(𝑦) = 𝑎′(𝑦),

𝑐(𝑦) = (𝜆2

4
− 𝜇2) 𝑎(𝑦).

These results were obtained by Taylor expansion of the kernel 𝑘 and brute-force ex-
ploitation of the commutation relation.

Note that all the above cited works are concerned with an indicator function in space,
and let the kernel 𝑘 free. If one decides forget about the space indicator function, no result
is known.

Furthermore, these results tell us what kernel 𝑘 can be used if one wants to find a
commuting differential operator, but we are not able to choose 𝑘. This goes against the
idea that one restricts in both space and Fourier domains as they want, and only then
looks for eigenvectors.

We also refer to the work of Papoulis [36] for band-filtering methods and applications
of the Prolate Spheroidal Wave Functions. Reconstruction of a function given its values
on a compact domain is also discussed by Grünbaum in [14].

V-2.2.2 Multi-dimensional works

One of the first attempts at finding a commuting differential operator for a domain of
restriction other than the unit ball is due to Grünbaum et al. [19]. They are able to recover
the 𝑑-dimensional toy model commuting differential operator, and expect the existence of
a commuting differential operator to fail for other geometries, like the torus for example.

In [4], the case of Gaussian filters in both space and Fourier domains is treated, and
the following result is obtained:

Theorem V.3: Brander, DeFacio (1986)

Let 𝑄 a real, piecewise twice continuously differentiable function that either has finite
support or goes to zero at infinity sufficiently fast, and such that 𝑄(𝑥) = 𝑄(−𝑥) for
𝑥 ∈ ℝ𝑑. Let 𝐾 the integral operator defined by

(𝐾𝑓)(𝑥) ∶= ∫
ℝ𝑑

𝑄(𝑥)𝑒−𝑖𝑐𝑥⋅𝑦𝑄(𝑦)𝑓(𝑦)𝑑𝑦,
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and 𝐷 the differential operator defined by

𝐷 ∶= −∇ ⋅ (𝛼(𝑥)∇) + 𝑈(𝑥).

Assume also that 𝛼 and 𝑄 are angle independent and twice differentiable, that is
𝛼, 𝑄 ∈ 𝐶2(ℝ+).
Then, the most general function 𝛼 for which 𝐾 and 𝐷 commute is given by

𝛼(𝑥) = 𝑎 + 𝑏|𝑥|2,

where 𝑎 and 𝑏 are arbitrary constants, 𝑎 ≠ 0. The corresponding function 𝑄 is given
by

𝑄(𝑥) = 1
√𝛼(𝑥)

exp (−𝛾 ∫
𝑥

0

𝑢
𝛼(𝑢)

𝑑𝑢) ,

with another arbitrary constant 𝛾, 𝛾 ≥ |𝑏|.

Again, this states that there exists some kind of compatibility required between the
space and Fourier restrictions.

Of utter importance is the work of Grünbaum [17], which shows that, in dimension 𝑑 =
2, the search for a commuting differential operator may be vain. He starts by restricting
the Fourier domain in a ball centered at origin of finite radius, and restricts the space
variable to a two-dimensional torus (i.e. a square with periodic boundary conditions). It is
then shown that the only second-order differential operator which can commute with the
integral operator is actually a scalar matrix, which commutes trivially. This is achieved,
again, by writing out explicitely the commutation relation, and finding explicit conditions
that are or are not satisfied.

In a recent review, Wang [51] gives a large number of references related to the spectral
concentration problem or Prolate Spheroidal Wave Functions (PSWF):

[10] an analoguous to the PSWF is derived when looking for them under polynomial
form. The study is done for the unit ball in the one- and three-dimensional cases.

[43] presents an analoguous to the Shannon number, which is roughly the number of
“useful” Slepian modes. It also gives a detailed study of the computation of Slepian
function on the sphere, with an arbitrary region of interest, or with an axisymmetric
polar cap. It relies heavily on the spherical geometry, by using spherical harmonics.

[40, 39] the first work presents a wavelet version of the Slepian functions on the
sphere, for incomplete data reconstruction. It computes the Slepian functions on
the sphere using the method described in [43]. The second work does essentially the
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same study when restricting to a manifold instead of the sphere. In this case, the
Slepian eigenvectors are obtained by solving a matrix eigenproblem. Even though
the authors do not mention it, their results seem to suffer from the same “eigen-
value clustering” issue detailed later in Section V-2.2.3: the manifold on which
they compute the Slepian function is symmetric but their Slepian functions are
not symmetric, which indicates that they might be linear combinations of all the
relevant eigenvectors.

[44] studies Slepian function on a disc. The eigenvalues are distinct enough so that
the eigenvectors can be well recovered. The same remark can be done with their
arbitrary two-dimensional shape, where all eigenvalues are distinct. It has to be
noted though that their arbitrary two-dimensional shape is perhaps the framework
closest to ours, since it does not rely at all on Slepian’s ideas and onyl uses numerical
integration.

[31] studies the case of the unit ball with a polar cap. The author says that “attempts
to compute the eigenfunctions of the integral operator K𝐹𝑛(𝑢) = 𝜇𝑛𝐹𝑛(𝑢) di-
rectly have not been fruitful”, then compares the integral discretization with the
commuting differential operator from [19].

In [7], another approach to time-frequency localization is presented, and it is based on
so-called coherent states. This is a direction which we will not explore here.

The only work we are aware of that treats the case of completely arbitrary space and
Fourier restrictions is due to Simons and Wang [44], but their brief study of the generalized
situation is only numerical. Moreover, the parameters in their numerical experiments are
such that there is no confusion possible between the eigenvalues, which is an ideal situation
not always occuring.

Numerical works

After realizing the commutation property, D. Slepian et al. put it to good use by
describing a method for computing numerically the eigenvectors of the discretized con-
centration operator 𝒦 from (V-2.2). Once again, the method used in the discretized case
relies heavily on the explicit expression for a commuting differential operator.

Ever since, all efficient computations of the eigenvectors of (the discretized version of)
𝒦 have used the differential operator 𝒫 from (V-2.3). Among many other works, we can
cite [45, 16], and [37, Section 8.3].

These efficient algorithms are efficient in two senses: first, the matrix representing the
differential operator is tridiagonal, thus it can be manipulated and diagonalized quickly.
Second, its eigenvalues are distinct and the eigenvectors can be obtained easily 6. The

6. We will show later that this second fact fails when diagonalizing the full concentration matrix, and
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reason why an eigendecomposition is never applied to the discretized version of the con-
centration operator 𝒦 is explained in Section V-2.2.3 – Numerical difficulties.

In [25], Karnik et al. propose a Fast Slepian Transform, i.e. an efficient way of project-
ing onto the Slepian basis. Their Slepian modes are, however, only in 1D and treat the
Slepian toy model.

The fast computation of Slepian modes may become one day important, for the reason
underlined by Boyd in [34]:

“

”J. P. Boyd (2013)

Because the prolate functions are orthogonal with the weight func-
tion of unity, just like Legendre polynomials, the prolate functions
are the basis that is “plug-and-play” compatible with finite ele-
ments or spectral element or other programs that employ Legen-
dre polynomials. The claimed advantage of prolate functions is that
they can resolve wavy, bandlimited signals with only two points per
wavelength, whereas Legendre polynomials and Chebyshev polyno-
mials require a minimum of 𝜋 degrees of freedom per wavelength.

One of the most recent works concerning the study of eigenvalues is [24], where they
study the eigenvalues of the discretized operator, i.e. of the band and time limiting matrix
K, for the toy model. In order to obtain a bound on the number of eigenvalues 𝜆𝑘 such
that 𝜀 < 1−𝜆𝑘 < 1−𝜀 for 𝜀 ∈ (0, 1), they show that the matrix K−K2 has low numerical
rank. This means that few eigenvalues of K − K2 are far from zero, which in turn means
that K has few eigenvalues far away from zero or one.

Remark V.3

There exist some other generalizations of the spectral concentration problem (e.g. [8]),
but we will not focus on them because they do not fit into the generalized framework
we will describe in Chapter V-4.

special attention has to be paid when designing numerical algorithms for the full concentration matrix.
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V-2.2.3 Numerical difficulties

To us, the quantities of interest are the eigenfunctions of the concentration operator
𝒦, defined either by (V-2.2) for the toy model, or by (V-4.5) for the more general case.
Thus we are interested in cheap, fast, and precise algorithms to obtain them.

For the toy model (V-2.2), this “graal” has been obtained thanks to the “lucky acci-
dent”, i.e. the commutation property with the differential operator 𝒫 from (V-2.3).

As we mentioned previously, Grünbaum [14] studied a generalization of the Slepian
concentration problem that is of interest to us. Unable to find a relation similar to the
commutation relation, the author had to resort to “full-matrix” algorithms, and so do
we. This work was however interested mostly in the behavior of eigenvalues rather than
eigenvectors, and the main difficulty we face when diagonalizing the full matrix is not
studied. One issue that [14] did not explain, is that the computation of eigenvectors needs
much more precision than the computation of eigenvalues. This is purely a “numerical
linear algebra” issue, let us explain why.

It is linked to the particular behavior of eigenvalues that we mentioned earlier: some
of them are close to 1, the others are close to 0. By “close”, we mean that the differ-
ence between two successive eigenvalues can be only a few orders of magnitude greater
than the machine precision 7. In such situations, numerical algorithms used for the eigen-
decomposition of a matrix may consider that the eigenvalues close to 1 are not several
eigenvalues close to others, but only a multiple eigenvalue. This is actually the behavior
observed on the one-dimensional toy model. Our main problem is that any linear combi-
nation of eigenvectors associated to the same eigenvalue is also an eigenvector, thus two
eigenalgorithms may yield very different results while they theoretically should be the
same (because theoretically, the eigenvalues are all distinct).

Numerically, we are in the following situation:

Lemma V.2

Let A a 𝑛 × 𝑛 matrix, with an eigenvalue 𝜆 of multiplicity 𝑚 ≤ 𝑛. Let 𝑢1, … , 𝑢𝑚,
𝑚 independant eigenvectors of A associated to the eigenvalue 𝜆. Then any linear
combination of 𝑢1, … , 𝑢𝑚 is also an eigenvector of A associated to 𝜆.

Proof. Let 𝑐1, … , 𝑐𝑚 ∈ ℂ,

A (
𝑚

∑
𝑖=1

𝑐𝑖𝑢𝑖) =
𝑚

∑
𝑖=1

𝑐𝑖A𝑢𝑖 =
𝑚

∑
𝑖=1

𝑐𝑖𝜆𝑢𝑖 = 𝜆 (
𝑚

∑
𝑖=1

𝑐𝑖𝑢𝑖) .

7. The meaning of “machine precision” has been explained in Section II-1 – Representation of contin-
uous problems on a computer.
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We display in Figure V-2.1a the eigenvector of K associated to the largest eigenvalue
𝜆1, obtained using three different methods. We recall that K is the discretized version of
the operator 𝒦 defined in (V-2.2), using 𝑁 discretization points spread uniformly. Figure
V-2.1b shows how close the first eigenvalues are to each other. The first method 8 used to
compute the eigenvector (solid blue curve) is called eig, and corresponds to the _geev
LAPACK routine. It can be used for general square matrices. The second method 9 used
to compute the eigenvector (dash orange curve) is called eigh, and corresponds to the
_heevd LAPACK routine. It specializes to symmetric or Hermitian matrices. The last
method 10 (dot-dash green curve) is the tri-diagonal formulation obtained from the work
of Slepian, see the above Section V-2.2.2 – Numerical works. The two LAPACK routines
used are described in the following paragraph.

The question of the precision of the computation of eigenvalues has been discussed in
[37, Section 8.1], and they also show that a lack of precision yields the wrong eigenvectors.

Used LAPACK routines They are detailed in [1]. The first routine we describe is
_geev. It performs an eigendecomposition on a general square matrix 𝐴, using the fol-
lowing steps (see [1, Section 2.4.5]):

1. Reduce 𝐴 to upper Hessenberg form:

𝐴 = 𝑄𝐻𝑄𝐻,

where 𝑄 is unitary and 𝐻 is zero below its first subdiagonal.

2. Reduce the upper Hessenberg matrix 𝐻 to Schur form:

𝐻 = 𝑆𝑇 𝑆𝐻,

where 𝑆 is an orthonormal matrix and 𝑇 is upper triangular. The eigenvalues of
𝐴 are given in the diagonal of 𝑇, and once they are known one can obtain the
eigenvectors. For instance, one can use inverse interation to obtain the eigenvectors
from 𝐻 and then multiply them with 𝑄.

The second routine used is _heevd, and it specializes to Hermitian (or symmetric)
matrices. The steps are as follows (see [1, Section 2.4.4]):

8. https://numpy.org/doc/stable/reference/generated/numpy.linalg.eig.html
9. https://numpy.org/doc/stable/reference/generated/numpy.linalg.eigh.html

10. https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.windows.dpss.html
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Figure V-2.1 – 𝑁 = 151, Ω = 0.1 ⋅ 2𝜋.
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1. Reduce 𝐴 to real tridiagonal form:

𝐴 = 𝑄𝑇 𝑄𝐻,

where 𝑄 is unitary and 𝑇 real symmetric tridiagonal.

2. Compute eigenvalues and eigenvectors of the real symmetric tridiagonal matrix 𝑇:

𝑇 = 𝑆Λ𝑆𝑇,

where 𝑆 is orthogonal and Λ diagonal. The desired eigenvectors are then 𝑄𝑆.

V-2.2.4 Alternative way to recover the differential operator

The commuting property of the integral operator 𝒦 (given in (V-2.2)) and the differ-
ential operator 𝒫 (given in (V-2.3)) was stated by Slepian. Actually, he just checked that
both operators commute, and did not explain where the differential operator came from.
It was found again later with brute-force computations, we refer to Section V-2 – Review
of the spectral concentration problem for relevant works.

In this section, we give an new way of obtaining the commuting differential operator
from 𝒦. The ideas used were designed in order to get some insight on how to general-
ize the commuting property for more general integral kernels, and more specifically the
generalized concentration kernels 𝒦 defined by (V-4.5).

It consists in assuming that the commuting differential operator is of order 2, and to
use basic Fourier relations: multiplication by 𝑥 in 𝑥-space is differentiation in Fourier, and
vice-versa.

Pseudodifferential approach In this subsection, we assume that the space domain
is restricted to 𝐷1 ⊂ ℝ𝑑 and the Fourier domain is restricted to 𝐷2 ⊂ ℝ𝑑. It is the
analoguous situation to the one-dimensional toy model, for which 𝐷1 = [−𝑇 , 𝑇 ] and
𝐷2 = [−Ω, Ω]. We are looking for conditions on 𝐷1 and 𝐷2 such that there exists a
(self-adjoint) differential operator 𝒫 commuting with the integral operator 𝒦 defined by

(𝒦𝑓)(𝑥) ∶= ∫
𝐷1

𝑓(𝑦) ∫
𝐷2

𝑒𝑖𝜉⋅(𝑥−𝑦)𝑑𝜉𝑑𝑦.

We will restrict ourselves to self-adjoint second-order differential operators of the form:

𝒫(𝑥, 𝜕𝑥) = div (A(𝑥)∇) + 𝐶(𝑥),
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where A is a matrix such that

A(𝑥) = 0 on 𝜕𝐷1.

Because of this boundary condition, the commutation relation is equivalent to

𝒫(𝑥, 𝜕𝑥)𝐾(𝑥, 𝑦) = 𝒫(𝑦, 𝜕𝑦)𝐾(𝑥, 𝑦).

We write 𝜑(𝑥, 𝜉) = 𝑒𝑖𝑥⋅𝜉. Using the fact that

𝜕𝑥𝜑(𝑥, 𝜉) = 𝑖𝜉𝜑(𝑥, 𝜉) and 𝑥𝜑(𝑥, 𝜉) = −𝑖𝜕𝜉𝜑(𝑥, 𝜉), (V-2.5)

the previous relation writes

∫
𝐷2

𝒫(−𝑖𝜕𝜉, 𝑖𝜉)𝜑(𝑥, 𝜉)𝜑(𝑦, 𝜉)d𝜉 = ∫
𝐷2

𝜑(𝑥, 𝜉)𝒫(𝑖𝜕𝜉, −𝑖𝜉)𝜑(𝑦, 𝜉)d𝜉

= ∫
𝐷2

𝜑(𝑥, 𝜉)𝒫(−𝑖𝜕𝜉, 𝑖𝜉)𝜑(𝑦, 𝜉)d𝜉.

Thus, the commutation relation is equivalent to

⟨𝒫(−𝑖𝜕𝜉, 𝑖𝜉)𝑓, 𝑔⟩𝐿2(𝐷2) = ⟨𝑓, 𝒫(−𝑖𝜕𝜉, 𝑖𝜉)𝑔⟩𝐿2(𝐷2),

for the Hermitian scalar product.

Let us now show using the pseudodifferential approach that, in the two-dimensional
case, the commutation results obtained by Slepian when 𝐷1 and 𝐷2 are both the unit
ball, can be generalized to the case of ellipses. Suppose 𝐷1 = 𝐸𝑙𝑙𝑖𝑝𝑠𝑒(0, 𝑎, 𝑏) and 𝐷2 =
𝐸𝑙𝑙𝑖𝑝𝑠𝑒(0, 𝑘1, 𝑘2), where

𝐸𝑙𝑙𝑖𝑝𝑠𝑒(0, 𝑎, 𝑏) ∶= {𝑥 ∈ ℝ2 ∶ 𝑎𝑥2
1 + 𝑏𝑥2

2 ≤ 1} , 𝑎, 𝑏 ≥ 0.

Since we require A to vanish on 𝜕𝐷1, we choose

A(𝑥) = (
𝑘1(𝑎𝑥2

1 + 𝑏𝑥2
2 − 1) 0

0 𝑘2(𝑎𝑥2
1 + 𝑏𝑥2

2 − 1)
) .

Thus, using relations (V-2.5),

𝒫(−𝑖𝜕𝜉, 𝑖𝜉) = 𝜉𝑇A(−𝑖𝜕𝜉)𝜉 + 𝐶(−𝑖𝜕𝜉) =
2

∑
𝑗=1

𝑘𝑗𝜉𝑗(𝑎𝜕2
𝜉1

+ 𝑏𝜕2
𝜉2

+ 1)𝜉𝑗 + 𝐶(−𝑖𝜕𝜉).
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Remark V.4

We emphasize the fact that 𝜕𝜉𝑗
𝜉𝑗 is actually the operator given for ℎ ∈ 𝐶∞(ℝ𝑑) by:

𝜕𝜉𝑗
𝜉𝑗ℎ = 𝜕𝜉𝑗

(𝜉𝑗ℎ).

In particular, we have
𝜕𝜉𝑗

𝜉𝑗 − 𝜉𝑗𝜕𝜉𝑗
= 1, (V-2.6)

since
𝜕𝜉𝑗

(𝜉𝑗ℎ) = ℎ + 𝜉𝑗𝜕𝜉𝑗
ℎ ⟺ (𝜕𝜉𝑗

𝜉𝑗 − 𝜉𝑗𝜕𝜉𝑗
) ℎ = ℎ.

Now we use the following relation:

∇𝜉(𝜉𝑗𝑓(𝜉)) = 𝜉𝑗∇𝜉𝑓 + 𝑒𝑗𝑓(𝜉),

where 𝑒1 = (
1
0
) and 𝑒2 = (

0
1
), from which we deduce

𝜉𝑗𝜕2
𝜉𝑗

𝜉𝑗 = (𝜕𝜉𝑗
𝜉𝑗 − 1) (𝜉𝑗𝜕𝜉𝑗

+ 1) = 𝜕𝜉𝑗
𝜉2

𝑗 𝜕𝜉𝑗
+ 𝜕𝜉𝑗

𝜉𝑗 − 𝜉𝑗𝜕𝜉𝑗
− 1 = 𝜕𝜉𝑗

𝜉2
𝑗 𝜕𝜉𝑗

.

The last equality follows from (V-2.6). Hence

2
∑
𝑗=1

𝑘𝑗𝜉𝑗(𝑎𝜕2
𝜉1

+ 𝑏𝜕2
𝜉2

+ 1)𝜉𝑗 = 𝑘1 (𝑎𝜉1𝜕2
𝜉1

𝜉1 + 𝑏𝜉1𝜕2
𝜉2

𝜉1 + 𝜉2
1) + 𝑘2 (𝑎𝜉2𝜕2

𝜉1
𝜉2 + 𝑏𝜉2𝜕2

𝜉2
𝜉2 + 𝜉2

2)

= 𝑘1 (𝑎𝜕𝜉1
𝜉2

1𝜕𝜉1
+ 𝑏𝜕𝜉2

𝜉2
1𝜕𝜉2

+ 𝜉2
1) + 𝑘2 (𝑎𝜕𝜉1

𝜉2
2𝜕𝜉1

+ 𝑏𝜕𝜉2
𝜉2

2𝜕𝜉2
+ 𝜉2

2)

= 𝑎𝜕𝜉1
(𝑘1𝜉2

1 + 𝑘2𝜉2
2) 𝜕𝜉1

+ 𝑏𝜕𝜉2
(𝑘1𝜉2

1 + 𝑘2𝜉2
2) 𝜕𝜉2

+ 𝑘1𝜉2
1 + 𝑘2𝜉2

2 .

Thus we have

𝒫(−𝑖𝜕𝜉, 𝑖𝜉) = div ((
𝑎(𝑘1𝜉2

1 + 𝑘2𝜉2
2) 0

0 𝑏(𝑘1𝜉2
1 + 𝑘2𝜉2

2)
) ∇) + 𝑘1𝜉2

1 + 𝑘2𝜉2
2 + 𝐶(−𝑖𝜕𝜉)

Let 𝐶(𝑥) = 𝑎𝑥2
1 + 𝑏𝑥2

2, we have

𝒫(−𝑖𝜕𝜉, 𝑖𝜉) = div ((
𝑎(𝑘1𝜉2

1 + 𝑘2𝜉2
2) 0

0 𝑏(𝑘1𝜉2
1 + 𝑘2𝜉2

2)
) ∇) + 𝑘1𝜉2

1 + 𝑘2𝜉2
2 − 𝑎𝜕2

𝜉1
− 𝑏𝜕2

𝜉2

= div ((
𝑎(𝑘1𝜉2

1 + 𝑘2𝜉2
2 − 1) 0

0 𝑏(𝑘1𝜉2
1 + 𝑘2𝜉2

2 − 1)
) ∇) + 𝑘1𝜉2

1 + 𝑘2𝜉2
2 .
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V-2.2. Known results

This operator is self-adjoint if (
𝑎(𝑘1𝜉2

1 + 𝑘2𝜉2
2 − 1) 0

0 𝑏(𝑘1𝜉2
1 + 𝑘2𝜉2

2 − 1)
) vanishes on

𝜕𝐷2. This happens when 𝐷2 = 𝐸𝑙𝑙𝑖𝑝𝑠𝑒(0, 𝑘1, 𝑘2).

When 𝑎 = 𝑏 and 𝑘1 = 𝑘2, we recover the radial differential operator 𝒫dim 2 from
(V-2.4). For 𝑎 ≠ 𝑏 or 𝑘1 ≠ 𝑘2, the result is new and cannot be found in the literature, to
the author’s knowledge.

However, this approach fails when considering more general geometrical shapes, and
also seems to fail if one is looking for higher-order differential operators.
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Prolate spheroidal wave
functions

The Prolate Spheroidal Wave Functions are encountered when one solves the Helmholtz
equation by separation of variables in prolate spheroidal coordinates (see [11, 35]). Their
first mention is in [33].

The scalar Helmholtz equation is

(Δ + 𝑘2)𝜓 = 0, (V-3.1)

and the change of variables from the Cartesian coordinates (𝑥, 𝑦, 𝑧) to the prolate spheroidal
coordinates (𝜂, 𝜉, 𝜑) is given by:

𝑥 = 𝑑
2

[(1 − 𝜂2)(𝜉2 − 1)]1/2 cos 𝜑,

𝑦 = 𝑑
2

[(1 − 𝜂2)(𝜉2 − 1)]1/2 sin 𝜑,

𝑧 = 𝑑
2

𝜂𝜉.

This change of variables is illustrated in Figure V-3.1.

After a change of coordinates, the functions 𝜓 solutions to (V-3.1) in Cartesian coordi-
nates become solutions, in the Prolate Spheroidal coordinates, of the following equation:

[ 𝜕
𝜕𝜂

(1 − 𝜂2) 𝜕
𝜕𝜂

+ 𝜕
𝜕𝜉

(𝜉2 − 1) 𝜕
𝜕𝜉

+ 𝜉2 − 𝜂2

(𝜉2 − 1)(1 − 𝜂2)
𝜕2

𝜕𝜑2 + 𝑐2(𝜉2 − 𝜂2)] 𝜓 = 0, (V-3.2)

where 𝑐 > 0.

By separation of variables, we can write the solutions to (V-3.2) as

𝜓𝑚,𝑛(𝑐, 𝜂, 𝜉, 𝜑) = 𝑆𝑚,𝑛(𝑐, 𝜂)𝑅𝑚,𝑛(𝑐, 𝜉) cos(𝑚𝜑)

and
𝜓𝑚,𝑛(𝑐, 𝜂, 𝜉, 𝜑) = 𝑆𝑚,𝑛(𝑐, 𝜂)𝑅𝑚,𝑛(𝑐, 𝜉) sin(𝑚𝜑),
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Figure V-3.1 – Prolate Spheroidal coordinates. The surfaces of constant 𝜂 and 𝜉 are
obtained by rotation around the 𝑥-axis, so this diagram is valid for any plane containing
the 𝑥-axis, hence it is sufficient to show only the 𝑥, 𝑧-plane.

where the functions 𝑆 and 𝑅 solve respectively

𝑑
𝑑𝜂

(1 − 𝜂2) 𝑑
𝑑𝜂

𝑆𝑚,𝑛(𝑐, 𝜂) + [𝜆𝑚,𝑛 − 𝑐2𝜂2 − 𝑚2

1 − 𝜂2 ] 𝑆𝑚,𝑛(𝑐, 𝜂) = 0,

and
𝑑
𝑑𝜉

(𝜉2 − 1) 𝑑
𝑑𝜉

𝑅𝑚,𝑛(𝑐, 𝜉) − [𝜆𝑚,𝑛 − 𝑐2𝜉2 + 𝑚2

𝜉2 − 1
] 𝑅𝑚,𝑛(𝑐, 𝜉) = 0.

In order to obtain the functions 𝑆𝑚,𝑛, 𝑅𝑚,𝑛, it is sufficient to study the following
one-dimensional equation:

𝑑
𝑑𝑧

(1 − 𝑧2) 𝑑
𝑑𝑧

𝑢(𝑐, 𝑧) + [𝜆 − 𝑐2𝑧2 − 𝜇2

1 − 𝑧2 ] 𝑢(𝑐, 𝑧) = 0, 𝑧 ∈ (−1, 1).

When 𝜇 = 0, we are looking for 𝑢 an eigenfunction of the differential operator 𝒫 from
(V-2.3). The function 𝑢 is then said to be a PSWF of order zero.

We refer to [11] for a detailed study of Prolate Spheroidal Wave Function, and to [35]
for a more recent work.

The Prolate Spheroidal Wave Functions are a one-parameter (𝑐) family of functions,

243



Part V, Chapter V-3 – Prolate spheroidal wave functions

studied on the real interval [−1, 1]. In [20], they are studied over [𝑏, 1], and it is shown that
a kernel operator exists and commutes with the modified differential operator. This allows
to obtain Prolate Spheroidal Wave Function on a spherical cap of the three-dimensional
unit ball. In [49], the Prolate Spheroidal Wave Functions are studied on triangles. In [32],
the reproducing-kernel approach is generalized and known cases are recovered.

For other various applications and generalizations, we refer to [21, 26, 27].

The importance of PSWF in numerical schemes has been assessed in [5] and references
therein, and it was shown that using the PSWF as a basis for spectral methods require
less grid points and is numerically more appropriate for band-limited functions. The use
of the Prolate Spheroidal Wave functions from a numerical perspective is also studied in
[28, 3].

Also quite unexpectedly, the Prolate Spheroidal Wave functions seem to be linked to
the zeros of the Riemann zeta function [6, 18]. This is merely anedoctal in this work, and
we will not focus in this work on this aspect of the Prolate Spheroidal Wave Functions.
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In the toy model from Section V-2.1 – The Slepian “toy model”, it was chosen to have
a Fourier transform with compact support in [−Ω, Ω], and to maximize the 𝕃2([−𝑇 , 𝑇 ])
norm. The same “importance” is given to every point in the Fourier domain and to every
point in the space domain. A natural question is the following: can we draw similar
conclusions if one can choose the importance of every point in the Fourier and space
domains? In other words, the toy model corresponds to filters being applied to the function
𝑓 in space and Fourier domains, these filters being respectively 1[−𝑇 ,𝑇 ] and 1[−Ω,Ω]. What
can we say if these space and Fourier filters are now arbitrary?

Let us write 𝑚𝑆 and 𝑚𝐹 the space and Fourier filters. They are the two inputs of the
generalized spectral concentration problem. We assume that 𝑚𝑆, 𝑚𝐹 ∈ 𝕃2(ℝ𝑑; ℂ) are not
identically equal to zero. We also assume they are such that the kernel 𝐾 defined later in
(V-4.5) is not identically zero.

To the author’s knowledge, this very general question has not been studied before.
The existing situation closest to this one is that of Brander and DeFacio [4], who consider
Gaussian filters. But even then, it is very restrictive. We allow much more freedom and
derive a theoretical framework that allows our filters to be completely arbitrary, except
for some mild integrability condition.

V-4.1 Derivation of the kernel 𝐾

We associate to each one of the filters an operator 𝕃2(ℝ𝑑; ℂ) → 𝕃2(ℝ𝑑; ℂ), defined as
follows: for 𝑔 ∈ 𝕃2(ℝ𝑑; ℂ),

(ℳ𝑆𝑔)(𝑥) ∶= 𝑚𝑆(𝑥)𝑔(𝑥), (ℳ𝐹𝑔)(𝑥) ∶= ℱ−1 [𝑚𝐹ℱ[𝑔]] (𝑥),

where ℱ[ℎ] denotes the Fourier transform 1 of the function ℎ ∈ 𝕃2(ℝ𝑑; ℂ):

ℱ[ℎ](𝜉) ∶= ∫
ℝ𝑑

ℎ(𝑥)𝑒−𝑖𝜉⋅𝑥𝑑𝑥. (V-4.1)

1. See Section II-5 – The Fourier transforms for more details.
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Part V, Chapter V-4 – Generalized framework

The notation ℎ̂ may also be used interchangeably. The Fourier transform is invertible,
and we use the following convention:

ℱ−1[ℎ](𝑥) ∶= 1
(2𝜋)𝑑 ∫

ℝ𝑑

ℎ(𝜉)𝑒𝑖𝑥⋅𝜉𝑑𝜉. (V-4.2)

The Slepian Concentration Problem with arbitrary filters is now the following:

arg max
𝑓∈𝕃2(ℝ𝑑;ℂ)

‖ℳ𝐹ℳ𝑆𝑓‖2
𝕃2(ℝ𝑑;ℂ)

‖𝑓‖2
𝕃2(ℝ𝑑;ℂ)

. (V-4.3)

We have

(ℳ𝐹ℳ𝑆𝑓)(𝑥) = ℱ−1 [𝑚𝐹ℱ[𝑚𝑆𝑓]] (𝑥) = (𝑚𝐹 ⋆ (𝑚𝑆𝑓))(𝑥),

where ⋆ denotes the convolution operator, and thus

‖ℳ𝐹ℳ𝑆𝑓‖2
𝕃2(ℝ𝑑;ℂ)

= ∫
ℝ𝑑

(∫
ℝ𝑑

𝑚𝐹(𝑥 − 𝑦)(𝑚𝑆𝑓)(𝑦)𝑑𝑦) (∫
ℝ𝑑

𝑚𝐹(𝑥 − 𝑧)(𝑚𝑆𝑓)(𝑧)(𝑧)𝑑𝑧)𝑑𝑥

= ∫
ℝ𝑑

∫
ℝ𝑑

𝑚𝑆(𝑦)𝑓(𝑦)𝑚𝑆(𝑧)𝑓(𝑧) (∫
ℝ𝑑

𝑚𝐹(𝑥 − 𝑦)𝑚𝐹(𝑥 − 𝑧)𝑑𝑥) 𝑑𝑦𝑑𝑧.

The Parseval identity (see e.g. [48], or Theorem II.1) yields

∫
ℝ𝑑

𝑚𝐹(𝑥 − 𝑦)𝑚𝐹(𝑥 − 𝑧)𝑑𝑥 = 1
(2𝜋)𝑑 ∫

ℝ𝑑

𝑒𝑖𝜉⋅(𝑧−𝑦) |𝑚𝐹(𝜉)|2 𝑑𝜉,

hence

‖ℳ𝐹ℳ𝑆𝑓‖2
𝕃2(ℝ𝑑;ℂ)

= 1
(2𝜋)𝑑 ∫

ℝ𝑑

∫
ℝ𝑑

𝑚𝑆(𝑦)𝑓(𝑦)𝑚𝑆(𝑧)𝑓(𝑧) (∫
ℝ𝑑

𝑒𝑖𝜉⋅(𝑧−𝑦) |𝑚𝐹(𝜉)|2 𝑑𝜉) 𝑑𝑦𝑑𝑧

= ∫
ℝ𝑑

∫
ℝ𝑑

𝑓(𝑥)𝐾(𝑥, 𝑦)𝑓(𝑦)𝑑𝑥𝑑𝑦, (V-4.4)

where
𝐾(𝑥, 𝑦) ∶= 1

(2𝜋)𝑑 𝑚𝑆(𝑥)𝑚𝑆(𝑦) ∫
ℝ𝑑

𝑒𝑖𝜉⋅(𝑦−𝑥) |𝑚𝐹(𝜉)|2 𝑑𝜉

= 𝑚𝑆(𝑥)𝑚𝑆(𝑦)ℱ−1 [|𝑚𝐹|2] (𝑦 − 𝑥).
(V-4.5)

This kernel 𝐾 is the generalized spectral concentration kernel, with filters 𝑚𝑆 in space
and 𝑚𝐹 in Fourier domain.
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Lemma V.3

If 𝑚𝑆, 𝑚𝐹 ∈ 𝕃2(ℝ𝑑; ℂ), then the kernel 𝐾 is square integrable:

‖𝐾‖𝕃2(ℝ𝑑×ℝ𝑑;ℂ) ≤ ‖𝑚𝑆‖2
𝕃2(ℝ𝑑;ℂ)‖𝑚𝐹‖2

𝕃2(ℝ𝑑;ℂ).

Proof. We have:

∫
ℝ𝑑×ℝ𝑑

|𝐾(𝑥, 𝑦)|2 𝑑𝑥𝑑𝑦 = ∫
ℝ𝑑×ℝ𝑑

|𝑚𝑆(𝑥)|2|𝑚𝑆(𝑦)|2 ∣ℱ−1 [|𝑚𝐹|2] (𝑦 − 𝑥)∣
2

𝑑𝑥𝑑𝑦,

and

∣ℱ−1 [|𝑚𝐹|2] (𝑦 − 𝑥)∣
2

= ∣∫
ℝ𝑑

|𝑚𝐹(𝜉)|2𝑒𝑖𝜉⋅(𝑦−𝑥)𝑑𝜉∣
2

≤ (∫
ℝ𝑑

|𝑚𝐹(𝜉)|2𝑑𝜉)
2

= ‖𝑚𝐹‖4
𝕃2(ℝ𝑑;ℂ)

Hence,

∫
ℝ𝑑×ℝ𝑑

|𝐾(𝑥, 𝑦)|2 𝑑𝑥𝑑𝑦 = ∫
ℝ𝑑×ℝ𝑑

|𝑚𝑆(𝑥)|2|𝑚𝑆(𝑦)|2‖𝑚𝐹‖4
𝕃2(ℝ𝑑;ℂ)𝑑𝑥𝑑𝑦

= ‖𝑚𝑆‖4
𝕃2(ℝ𝑑;ℂ)‖𝑚𝐹‖4

𝕃2(ℝ𝑑;ℂ),

and finally
‖𝐾‖𝕃2(ℝ𝑑×ℝ𝑑;ℂ) = ‖𝑚𝑆‖2

𝕃2(ℝ𝑑;ℂ)‖𝑚𝐹‖2
𝕃2(ℝ𝑑;ℂ). (V-4.6)

Finally, the optimization problem (V-4.3) becomes:

arg max
𝑓∈𝕃2(ℝ𝑑;ℂ)

‖𝑓‖2=1

= ∫
ℝ𝑑

∫
ℝ𝑑

𝑓(𝑥)𝐾(𝑥, 𝑦)𝑓(𝑦)𝑑𝑥𝑑𝑦. (V-4.7)

V-4.2 Eigenvectors of the kernel 𝐾

In this section, we show that the solutions to the maximization problem (V-4.7) form
a countable subset of 𝕃2(ℝ𝑑; ℂ), and that these solutions are exactly the eigenvectors of
the concentration operator. Moreover, for each one of those eigenvectors there exists an
associated real eigenvalue lying in the open interval (0, 1).

We start by showing that the concentration operator is Hilbert-Schmidt, but first
recall a few definitions and results from [38, Chapter VI]. In this section, we denote by 𝐻
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Part V, Chapter V-4 – Generalized framework

a separable Hilbert space, and by ℒ(𝐻) the set of linear operators 𝐻 → 𝐻. We denote
its inner product (⋅, ⋅)𝐻.

Definition V.1: Trace of an operator, trace class

Let {𝜑𝑛}𝑛∈ℕ an orthonormal basis. Then, for any positive operator 𝐴 ∈ ℒ(𝐻), trace
is defined by

trace 𝐴 ∶= ∑
𝑛∈ℕ

(𝜑𝑛, 𝐴𝜑𝑛)𝐻 .

An operator 𝐴 ∈ ℒ(𝐻) is called trace class if and only if

trace |𝐴| < ∞.

Definition V.2: Hilbert-Schmidt operator

An operator 𝑇 ∈ ℒ(𝐻) is called Hilbert-Schmidt if and only if

trace 𝑇 ∗𝑇 < ∞.

Theorem V.4

Let (𝑀, 𝜇) be a measure space and 𝐻 = 𝕃2(𝑀, 𝑑𝜇). Then 𝒦 ∈ ℒ(𝐻) is Hilbert-
Schmidt if and only if there is a function

𝐾 ∈ 𝕃2(𝑀 × 𝑀, 𝑑𝜇 ⊗ 𝑑𝜇),

with
(𝒦𝑓)(𝑥) = ∫

𝑀
𝐾(𝑥, 𝑦)𝑓(𝑦)𝑑𝜇(𝑦).

Moreover,
‖𝒦‖2

2 = ∫
𝑀×𝑀

|𝐾(𝑥, 𝑦)|2𝑑𝜇(𝑥)𝑑𝜇(𝑦).

Theorem V.5: Hilbert-Schmidt

Let 𝐴 be a self-adjoint compact operator on 𝐻. Then there is a complete orthonormal
basis {𝜓𝑛}𝑛≥1 for 𝐻, so that 𝐴𝜓𝑛 = 𝜆𝑛𝜓𝑛 and 𝜆𝑛 → 0 as 𝑛 → ∞.
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We then have our main result about the concentration operator:

Proposition V.1

The concentration operator 𝒦 defined for 𝑓 ∈ 𝕃2(ℝ𝑑; ℂ) by

(𝒦𝑓)(𝑥) ∶= ∫
ℝ𝑑

𝐾(𝑥, 𝑦)𝑓(𝑦)𝑑𝑦, (V-4.8)

where the kernel 𝐾 is defined by (V-4.5), is a Hilbert-Schmidt operator and enjoys the
following properties:

1. The kernel 𝐾 is Hermitian, and the operator 𝒦 is self-adjoint, compact, and
positive semi-definite.

2. The countable family {𝜓𝑖}
∞
𝑖=1 of eigenfunctions of 𝒦 is orthonormal for the usual

𝕃2(ℝ𝑑; ℂ) inner product, the associated eigenvalues {𝜆𝑖}
∞
𝑖=1 are real, nonnega-

tive, and we can order them so that 1 > 𝜆𝑖 ≥ 𝜆𝑖+1 ≥ 0, 𝑖 ≥ 1.

3. The orthonormal basis of eigenfunctions {𝜓𝑖}
∞
𝑖=1 solve the maximization problem

(V-4.7), and the maximal values attained are the eigenvalues {𝜆𝑖}
∞
𝑖=1.

4. For large 𝑛, 𝜆𝑛 = 𝑜(𝑛−1/2).

5. Suppose |𝑚𝐹|2 is even, and 𝑚𝑆 is real, then 𝒦 is real-valued for real inputs.

Proof. The fact that 𝒦 is a Hilbert-Schmidt operator directly follows from Theorem V.4,
since 𝐾 ∈ 𝕃2(ℝ𝑑 × ℝ𝑑; ℂ) by Lemma V.3.

The Hermitian character is obtained easily:

𝐾(𝑥, 𝑦) = 𝑚𝑆(𝑥)𝑚𝑆(𝑦) ( 1
(2𝜋)𝑑 ∫

ℝ𝑑

|𝑚𝐹(𝜉)|2 𝑒𝑖𝜉⋅(𝑦−𝑥))

= 𝑚𝑆(𝑥)𝑚𝑆(𝑦) ( 1
(2𝜋)𝑑 ∫

ℝ𝑑

|𝑚𝐹(𝜉)|2 𝑒𝑖𝜉⋅(𝑥−𝑦))

= 𝐾(𝑦, 𝑥).

For the self-adjointness, let 𝑓, 𝑔 ∈ 𝕃2(ℝ𝑑; ℂ):

(𝒦𝑓, 𝑔)𝕃2(ℝ𝑑;ℂ) = ∫
ℝ𝑑

(𝒦𝑓)(𝑥)𝑔(𝑥)𝑑𝑥 = ∫
ℝ𝑑

𝑔(𝑥) ∫
ℝ𝑑

𝐾(𝑥, 𝑦)𝑓(𝑦)𝑑𝑦𝑑𝑥

= ∫
ℝ𝑑

𝑔(𝑥) ∫
ℝ𝑑

𝐾(𝑦, 𝑥)𝑓(𝑦)𝑑𝑦𝑑𝑥 = (𝑓, 𝒦𝑔)𝕃2(ℝ𝑑;ℂ) .

The compactness follows from [38, Theorem VI.22(e)] which states that all Hilbert-
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Schmidt operators are compact. The positive semi-definiteness is straightforward: let
𝑓 ∈ 𝕃2(ℝ𝑑; ℂ),

(𝑓, 𝒦𝑓)𝕃2(ℝ𝑑;ℂ) = 1
(2𝜋)𝑑 ∫

ℝ𝑑

∫
ℝ𝑑

𝑓(𝑥)𝑚𝑆(𝑥)𝑚𝑆(𝑦)𝑓(𝑦) (∫
ℝ𝑑

|𝑚𝐹(𝜉)|2 𝑒𝑖𝜉⋅(𝑦−𝑥)𝑑𝜉) 𝑑𝑥𝑑𝑦

= 1
(2𝜋)𝑑 ∫

ℝ𝑑

|𝑚𝐹(𝜉)|2 (∫
ℝ𝑑

𝑓(𝑥)𝑚𝑆(𝑥)𝑒−𝑖𝜉⋅𝑥𝑑𝑥) (∫
ℝ𝑑

𝑚𝑆(𝑦)𝑓(𝑦)𝑒−𝑖𝜉⋅𝑦𝑑𝑦)𝑑𝜉

≥ 0.

In particular, this implies that the eigenvalues are nonnegative. In order to obtain the
orthonormal basis made of eigenfunctions of 𝒦, we use Theorem V.5, which can be applied
since we have just shown that 𝒦 is a self-adjoint and compact operator.

We now show that the eigenfunctions {𝜓𝑖}
∞
𝑖=1 are exactly solutions to the maximization

problem (V-4.7).
Let 𝑓 ∈ 𝕃2(ℝ𝑑; ℂ), using the completeness of {𝜓𝑖}

∞
𝑖=1 we can decompose

𝑓 =
∞

∑
𝑖=1

𝑐𝑖𝜓𝑖. (V-4.9)

We denote 𝜅1 the maximal value attainable in (V-4.7):

𝜅1 = max
𝑓∈𝕃2(ℝ𝑑;ℂ)

(𝑓, 𝒦𝑓)𝕃2(ℝ𝑑;ℂ)

‖𝑓‖2
𝕃2(ℝ𝕕;ℂ)

.

Using (V-4.9), we get

𝜅1 = max
𝑓∈𝕃2(ℝ𝑑;ℂ)

1
‖𝑓‖2

𝕃2(ℝ𝕕;ℂ)

∞
∑
𝑖,𝑗=1

𝑐𝑖𝜆𝑗𝑐𝑗 (𝜓𝑖, 𝜓𝑗)𝕃2(ℝ𝑑;ℂ)
= max

𝑓∈𝕃2(ℝ𝑑;ℂ)

1
∑∞

𝑖=1 |𝑐𝑖|2
∞

∑
𝑖=1

|𝑐𝑖|2𝜆𝑖.

Now suppose that 𝜆1 > 𝜆2, then the maximal value attainable is 𝜅1 = 𝜆1 and it is
attained for 𝑓1 = 𝜓1. The next function we are looking for in the maximization problem
is one that maximizes (V-4.7), and which is orthogonal to 𝜓1. If 𝜆2 > 𝜆3, the maximal
value is 𝜅2 = 𝜆2 and it is attained for 𝑓2 = 𝜓2.

Now, if at any point there exists 𝑖, 𝑚 ≥ 1 such that 𝜆𝑖 = ⋯ = 𝜆𝑖+𝑚, the max-
imal value attainable by the maximization problem is 𝜆𝑖, and it is attained for 𝑓 ∈
Span {𝜓𝑖, … , 𝜓𝑖+𝑚}. The 𝑚 next maximization problems will also have as maximal
value 𝜅𝑖+𝑙 = 𝜆𝑖, 𝑙 = 0, … , 𝑚, and the functions for which this value is attained will
be 𝑓𝑖+1, … , 𝑓𝑖+𝑚 ∈ Span {𝜓𝑖, … , 𝜓𝑖+𝑚}. Moreover, when looking for 𝑓𝑙, we impose that
it is orthogonal to 𝑓𝑘, 𝑘 < 𝑙. Thus, the functions 𝑓𝑖, … , 𝑓𝑖+𝑚 will be pairwise orthogo-
nal. We can obviously choose 𝑓𝑖 = 𝜓𝑖. Finally, the orthonormal family of eigenvectors

250



V-4.2. Eigenvectors of the kernel 𝐾

{𝜓𝑖}
∞
𝑖=1 of the concentration operator 𝒦 solve the maximization problem (V-4.7), and

the eigenvalues 𝜆𝑖 is the maximal value attained by (V-4.7) when imposing 𝑓 orthogonal
to {𝜓1, … , 𝜓𝑖−1}.

The fourth point follows from [38, Theorem VI.22(e)], which states that

∞
∑
𝑛=1

𝜆2
𝑛 < ∞.

This series is convergent only if 𝜆𝑛 = 𝑜(𝑛−1/2) for large 𝑛.
About the fifth point, it suffices to show that the inverse Fourier transform of |𝑚𝐹|2

is real. We have

∫
ℝ𝑑

|𝑚𝐹(𝜉)|2𝑒𝑖𝜉⋅(𝑦−𝑥)𝑑𝜉 = ∫
ℝ𝑑

|𝑚𝐹(𝜉)|2 (cos(𝜉 ⋅ (𝑦 − 𝑥)) + 𝑖 sin(𝜉 ⋅ (𝑦 − 𝑥))) 𝑑𝜉

When |𝑚𝐹|2 is even, the complex quantity vanishes as the integral of an odd function.
Thus, only the real part remains.

We are now led to study the following eigenproblem:

𝜆𝑖𝜓𝑖(𝑥) = ∫
ℝ𝑑

𝐾(𝑥, 𝑦)𝜓𝑖(𝑦)𝑑𝑦

= ∫
ℝ𝑑

𝑚𝑆(𝑥)𝑚𝑆(𝑦)𝜓𝑖(𝑦)ℱ−1 [|𝑚𝐹|2] (𝑦 − 𝑥)𝑑𝑦.
(V-4.10)

Remark V.5

To make ideas clearer, suppose that 𝑚𝑆 = 1𝐷1
and 𝑚𝐹 = 1𝐷2

for some finite-volume
open sets 𝐷1, 𝐷2 ∈ ℝ𝑑. This means that we are looking for functions that are the most
concentrated in 𝐷1 and whose Fourier transform is the most concentrated in 𝐷2. The
eigenproblem (V-4.10) becomes

𝜆𝑖𝜓𝑖(𝑥) = 1𝐷1
(𝑥) ∫

𝐷1

𝜓𝑖(𝑦)ℱ−1 [|𝑚𝐹|2] (𝑦 − 𝑥)𝑑𝑦.

Two situations can occur:

1. The eigenvector 𝜓𝑖 is nonzero in some domain outside of 𝐷1, and the RHS must
be zero because of the indicator function. This implies that 𝜆𝑖 = 0. We note
that, since the family of eigenvectors {𝜓𝑖}

∞
𝑖=1 is a basis of 𝕃2(ℝ𝑑; ℂ), there is

necessarily an infinity of eigenvalues which are zero.

2. The eigenvector 𝜓𝑖 is compactly supported with supp 𝜓𝑖 ⊂ 𝐷1, in which case
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𝜆𝑖 can be “large” (i.e. close to 1).

The space mask 𝑚𝑆 = 1𝐷1
acts as a cut-off function for 𝜓𝑖: if we look at a nonzero

eigenvalue 𝜆𝑖, the corresponding eigenfunction 𝜓𝑖 is contained in 𝐷1. On the other
hand, since 𝜓𝑖 is compactly supported, the Fourier transform ℱ[𝜓𝑖] cannot be com-
pactly supported in 𝐷2. In other words, 𝜓𝑖 is compactly supported in space and its
Fourier transform is concentrated in 𝐷2.

In the following lemma, for a function 𝑓 and a matrix A, we write (𝑓 ∘A)(𝑥) ∶= 𝑓(A𝑥).

Lemma V.4: Symmetries

Suppose there exists a unitary matrix S and 𝛼 ∈ ℂ, |𝛼| = 1, such that 𝑚𝑆 ∘ S = 𝛼𝑚𝑆

and |𝑚𝐹 ∘ S| = |𝑚𝐹|. If 𝜓 is an eigenvector of 𝒦 associated to a nonzero eigenvalue
of multiplicity one, then there exists 𝛽 ∈ ℂ, |𝛽| = 1, such that

𝜓 ∘ S = 𝛽𝜓.

Proof. It follows from straightforward computations. First of all, since S is a unitary
matrix, |det S| = 1. We now compute

𝜆𝜓(S𝑥) = ∫
ℝ𝑑

𝑚𝑆(S𝑥)𝑚𝑆(𝑦)ℱ−1 [|𝑚𝐹|2] (𝑦 − S𝑥)𝜓(𝑦)𝑑𝑦.

The change of variables 𝑦 = S ̃𝑦 yields

𝜆𝜓(S𝑥) = ∫
ℝ𝑑

𝑚𝑆(S𝑥)𝑚𝑆(S ̃𝑦)ℱ−1 [|𝑚𝐹|2] (S ̃𝑦 − S𝑥)𝜓(S ̃𝑦)𝑑 ̃𝑦,

where we have used |det S| = 1. Owing to the assumption 𝑚𝑆 ∘ S = 𝛼𝑚𝑆, |𝛼| = 1,

𝜆𝜓(S𝑥) = ∫
ℝ𝑑

𝑚𝑆(𝑥)𝑚𝑆( ̃𝑦)ℱ−1 [|𝑚𝐹|2] (S ̃𝑦 − S𝑥)𝜓(S ̃𝑦)𝑑 ̃𝑦.

It only remains to show that ℱ−1 [|𝑚𝐹|2] (S ̃𝑦 − S𝑥) = ℱ−1 [|𝑚𝐹|2] ( ̃𝑦 − 𝑥). Letting
𝜉 = S ̃𝜉 ⟺ ̃𝜉 = S∗𝜉,

ℱ−1 [|𝑚𝐹|2] (S ̃𝑦 − S𝑥) = 1
(2𝜋)𝑑 ∫

ℝ𝑑

|𝑚𝐹(𝜉)|2 𝑒𝑖𝜉⋅S( ̃𝑦−𝑥)𝑑𝜉

= 1
(2𝜋)𝑑 ∫

ℝ𝑑

∣𝑚𝐹(S ̃𝜉)∣
2

𝑒𝑖S ̃𝜉⋅S( ̃𝑦−𝑥)𝑑 ̃𝜉.
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We have again used the fact that |det S| = 1. By the unitary property of the matrix S,
S ̃𝜉 ⋅ S( ̃𝑦 − 𝑥) = ̃𝜉 ⋅ ( ̃𝑦 − 𝑥), hence

ℱ−1 [|𝑚𝐹|2] (S ̃𝑦−S𝑥) = 1
(2𝜋)𝑑 ∫

ℝ𝑑

∣𝑚𝐹(S ̃𝜉)∣
2

𝑒𝑖 ̃𝜉⋅( ̃𝑦−𝑥)𝑑 ̃𝜉 = 1
(2𝜋)𝑑 ∫

ℝ𝑑

∣𝑚𝐹( ̃𝜉)∣
2

𝑒𝑖 ̃𝜉⋅( ̃𝑦−𝑥)𝑑 ̃𝜉,

where the last equality is due to the assumption |𝑚𝐹 ∘ S| = |𝑚𝐹|. We finally obtain

𝜆𝜓(S𝑥) = ∫
ℝ𝑑

𝑚𝑆(𝑥)𝑚𝑆( ̃𝑦)ℱ−1 [|𝑚𝐹|2] ( ̃𝑦 − 𝑥)𝜓(S ̃𝑦)𝑑 ̃𝑦,

and since both 𝜓 ∘ S and 𝜓 are eigenfunctions of 𝒦 associated to a nonzero eigenvalue
of multiplicity one, they must agree up to some multiplicative constant. Since they both
have the same 𝕃2(ℝ𝑑) norm, that constant must have modulus one.

When 𝜆 is a multiple eigenvalue, we cannot show that all symmetries of the masks are
recovered in the eigenfunctions. Indeed, suppose 𝜆 is an eigenvalue of multiplicity 𝑝 ∈ ℕ∗,
then there exist 𝜙1, … , 𝜙𝑝, eigenfunctions of 𝒦 associated to 𝜆. For any 𝑖 = 1, … , 𝑝,
the same computations as above yield that 𝜙𝑖 ∘ S is an eigenfunction associated to 𝜆.
Therefore, we can only decompose

𝜙𝑖 ∘ S =
𝑝

∑
𝑗=1

𝛽𝑖,𝑗𝜙𝑗, 𝛽𝑖,𝑗 ∈ ℂ, |𝛽𝑖,𝑗| = 1.

The case 𝑝 = 1 is precisely the statement of Lemma V.4. For 𝑝 > 1, we can expect that
not all symmetries (and maybe none) will be recovered in the associated eigenfunctions.

V-4.3 Discretized problem

In this section we will discuss the discretized version of the continuous eigenproblem
(V-4.10). As is generally done when dealing with continuous problems on a computer 2,
we will discretize the problem.

We start with a simplifying assumption: suppose there exists 𝑥(𝑘)
min, 𝑥(𝑘)

max ∈ ℝ, 𝑘 =
1, … , 𝑑, such that

supp 𝑚𝑆 ⊂ 𝑅𝑥 ∶= [𝑥(1)
min, 𝑥(1)

max] × ⋯ × [𝑥(𝑑)
min, 𝑥(𝑑)

max] ,

and 𝜉(𝑘)
min, 𝜉(𝑘)

max ∈ ℝ, 𝑘 = 1, … , 𝑑, such that

supp 𝑚𝐹 ⊂ 𝑅𝜉 ∶= [𝜉(1)
min, 𝜉(1)

max] × ⋯ × [𝜉(𝑑)
min, 𝜉(𝑑)

max] .

2. See Section II-1 – Representation of continuous problems on a computer for more details.
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𝑥(1)
min 𝑥(1)

max

𝑥(2)
min

𝑥(2)
max

Δ𝑥(1)

Δ𝑥(2)

𝑅𝑥

(a) Illustration of 𝑅𝑥.

2𝜋𝜉(1)
min 2𝜋𝜉(1)

max

2𝜋𝜉(2)
min

2𝜋𝜉(2)
max

Δ𝜉(1)

Δ𝜉(2)

𝑅𝜉

(b) Illustration of 𝑅𝜉.

Figure V-4.1 – Illustration of 𝑅𝑥 and 𝑅𝜉, when 𝑚𝑆 = 1duck shape (left) and 𝑚𝐹 = 1cat head
(right).

For each dimension 𝑛 of space, we use 𝑁𝑛+1 uniform discretization points, the stepsize
is then Δ𝑥(𝑛) = 𝑥(𝑛)

max−𝑥(𝑛)
min

𝑁𝑛
. We define

𝑥(𝑛)
𝑘 ∶= 𝑥(𝑛)

min + 𝑘Δ𝑥(𝑛), 𝑘 = 0, … , 𝑁𝑛,

and for 𝑗 = (𝑗1, … , 𝑗𝑑) ∈ ℕ𝑑, define

x𝑗 ∶= (𝑥(1)
𝑗1

, … , 𝑥(𝑑)
𝑗𝑑

).

We write 𝐽𝑥 ∶= [[0, 𝑁1]] × … [[0, 𝑁𝑑]] ⊂ ℕ𝑑 the subset of all indices 𝑗 such that x𝑗 ∈ 𝑅𝑥.
The quantities 𝑅𝑥, 𝑅𝜉, Δ𝑥(𝑑) and Δ𝜉(𝑑) are illustrated in Figure V-4.1.

Similarly, for the Fourier variable, we use 2𝑁𝑛 + 1 uniform discretization points in
each Fourier dimension 𝑛, and the stepsize is Δ𝜉(𝑛) = 𝜉(𝑛)

max−𝜉(𝑛)
min

2𝑁𝑛
. We define

𝜉(𝑛)
𝑘 ∶= 𝜉(𝑛)

min + 𝑘Δ𝜉(𝑛), 𝑘 = 0, … , 2𝑁𝑛,

and for 𝑗 = (𝑗1, … , 𝑗𝑑) ∈ ℕ𝑑, define

Ξ𝑗 ∶= (𝜉(1)
𝑗1

, … , 𝜉(𝑑)
𝑗𝑑

).

We write 𝐽𝜉 ∶= [[0, 2𝑁1]] × … [[0, 2𝑁𝑑]] ⊂ ℕ𝑑 the subset of all indices 𝑗 such that Ξ𝑗 ∈ 𝑅𝜉.
Unfortunately, since our continuous and discrete Fourier transform agree only up to a
scaling of 2𝜋 , we need as well a variable taking into account this scaling of 2𝜋. Thus, we

254



V-4.3. Discretized problem

let

𝜃(𝑛)
min ∶= 𝜉(𝑛)

min
2𝜋

, 𝜃(𝑛)
max ∶= 𝜉(𝑛)

max

2𝜋
, Δ𝜃(𝑛) ∶= 1

2𝜋
Δ𝜉(𝑛),

for 𝑛 = 1, … , 𝑑. We also write �̂�𝐹,2𝜋 the function such that

𝑚𝐹,2𝜋(⋅) = 𝑚𝐹(2𝜋⋅).

Similarly to what we did for the 𝜉 variable, we write

𝜃(𝑛)
𝑘 ∶= 𝜃(𝑛)

min + 𝑘Δ𝜃(𝑛), 𝑘 = 0, … , 2𝑁𝑛,

and for 𝑗 = (𝑗1, … , 𝑗𝑑) ∈ ℕ𝑑, we let

Θ𝑗 ∶= (𝜃(1)
𝑗1

, … , 𝜃(𝑑)
𝑗𝑑

) .

The discrete version of the eigenproblem (V-4.10) is obtained by performing the nu-
merical integration of (V-4.10) using the rectangle quadrature rule. In particular, the
inverse Fourier transform has to be approximated. We have

ℱ−1 [|𝑚𝐹|2] (𝑥) = 1
(2𝜋)𝑑 ∫

ℝ𝑑

|𝑚𝐹(𝜉)|2 𝑒𝑖𝜉⋅𝑥𝑑𝜉

= ∫
ℝ𝑑

|𝑚𝐹(2𝜋𝜃)|2 𝑒2𝑖𝜋𝜃⋅𝑥𝑑𝜃, (by letting 𝜉 = 2𝜋𝜃)

= ∫
ℝ𝑑

∣𝑚𝐹,2𝜋(𝜃)∣2 𝑒2𝑖𝜋𝜃⋅𝑥𝑑𝜃

≈ (
𝑑

∏
𝑛=1

Δ𝜃(𝑛)) ∑
𝑙∈𝐽𝜉

∣𝑚𝐹,2𝜋(Θ𝑙)∣
2 𝑒2𝑖𝜋Θ𝑙⋅𝑥

This yields, for every 𝑗 ∈ 𝐽𝑥,

𝜆𝑖𝑣𝑖(x𝑗) = (
𝑑

∏
𝑛=1

Δ𝑥(𝑛)Δ𝜃(𝑛)) 𝑚𝑆(x𝑗) ∑
𝑘∈𝐽𝑥

𝑚𝑆(x𝑘)𝑣𝑖(x𝑘) [∑
𝑙∈𝐽𝜉

∣𝑚𝐹,2𝜋(Θ𝑙)∣
2 𝑒2𝑖𝜋Θ𝑙⋅(x𝑘−x𝑗)] .

(V-4.11)
For the sake of simplicity, we will assume from now on that Δ𝑥(𝑛) = 1 for 𝑛 = 1, … , 𝑑.

Remark V.6

This assumption is made without loss of generality. Indeed, if Δ𝑥(𝑛) ≠ 1, we can
consider the function �̃�𝑆(𝑦) ∶= 𝑚𝑆(𝑦1Δ𝑥(1), … , 𝑦𝑑Δ𝑥(𝑑)), and thus for an appropriate
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scaled version 𝑅𝑦 of the grid 𝑅𝑥, we get Δ𝑦(𝑛) = 1.

Remark V.7

It is interesting to note that, in [45], D. Slepian defined the one-dimensional discrete
problem on {1, … , 𝑁} from scratch. The current section shows that the continuous
and discrete problems are the same (up to space discretizations). Slepian’s framework
is indeed recovered if we assume ∏𝑑

𝑛=1 Δ𝑥(𝑛) = 1, since the discretization points are
now all integers (up to a translation in the real space ℝ𝑑).

Moreover, we have

Θ𝑙 = (𝜃(1)
min + 𝑙1

𝜃(1)
max − 𝜃(1)

min
2𝑁1 + 1

, … , 𝜃(𝑑)
min + 𝑙𝑑

𝜃(𝑑)
max − 𝜃(𝑑)

min
2𝑁𝑑 + 1

) .

We let
Θmin ∶= (𝜃(1)

min, … , 𝜃(𝑑)
min) , Θmax ∶= (𝜃(1)

max, … , 𝜃(𝑑)
max) ,

and

Θmax − min
𝑙 ∶= (𝑙1

𝜃(1)
max − 𝜃(1)

min
2𝑁1 + 1

, … , 𝑙𝑑
𝜃(𝑑)

max − 𝜃(𝑑)
min

2𝑁𝑑 + 1
) .

Then,
Θ𝑙 = Θmin + Θmax − min

𝑙 ,

and the eigenproblem (V-4.11) can be rewritten under the form:

𝜆𝑖𝑣𝑖(x𝑗) = 𝑚𝑆(x𝑗) ∑
𝑘∈𝐽𝑥

𝑚𝑆(x𝑘)𝑣𝑖(x𝑘)𝑒2𝑖𝜋Θmin⋅(x𝑘−x𝑗)

× [(
𝑑

∏
𝑛=1

Δ𝜃(𝑛)) ∑
𝑙∈𝐽𝜉

∣𝑚𝐹,2𝜋(Θ𝑙)∣
2 𝑒2𝑖𝜋Θmax − min

𝑙 ⋅(x𝑘−x𝑗)]

⟺ 𝜆𝑖𝑣𝑖(x𝑗)𝑒2𝑖𝜋Θmin⋅x𝑗 = 𝑚𝑆(x𝑗) ∑
𝑘∈𝐽𝑥

𝑚𝑆(x𝑘)𝑣𝑖(x𝑘)𝑒2𝑖𝜋Θmin⋅x𝑘

× [(
𝑑

∏
𝑛=1

Δ𝜃(𝑛)) ∑
𝑙∈𝐽𝜉

∣𝑚𝐹,2𝜋(Θ𝑙)∣
2 𝑒2𝑖𝜋Θmax − min

𝑙 ⋅(x𝑘−x𝑗)]

⟺ 𝜆𝑖 ̃𝑣𝑖(x𝑗) = 𝑚𝑆(x𝑗) ∑
𝑘∈𝐽𝑥

𝑚𝑆(x𝑘) ̃𝑣𝑖(x𝑘) [(
𝑑

∏
𝑛=1

Δ𝜃(𝑛)) ∑
𝑙∈𝐽𝜉

∣𝑚𝐹,2𝜋(Θ𝑙)∣
2 𝑒2𝑖𝜋Θmax − min

𝑙 ⋅(x𝑘−x𝑗)] ,

(V-4.12)
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where ̃𝑣𝑖(𝑥) ∶= 𝑣𝑖(𝑥)𝑒2𝑖𝜋Θmin⋅𝑥.

Thus, we are now looking for the vectors { ̃𝑣𝑖(x𝑗)}𝑗∈𝐽𝑥
, which are eigenvectors of a

matrix defined component-wise by:

𝑚𝑆(x𝑗)𝑚𝑆(x𝑘) [(
𝑑

∏
𝑛=1

Δ𝜃(𝑛)) ∑
𝑙∈𝐽𝜉

∣𝑚𝐹,2𝜋(Θ𝑙)∣
2 𝑒2𝑖𝜋Θmax − min

𝑙 ⋅(x𝑘−x𝑗)] .

We can rewrite the matrix component (𝑗, 𝑘) under a numerically more convenient
form:

𝑚𝑆(x𝑗)𝑚𝑆(x𝑘) [(
𝑑

∏
𝑛=1

Δ𝜃(𝑛)) ∑
𝑙∈𝐽𝜉

|𝑚𝐹(2𝜋Θ𝑙)|
2 𝑒2𝑖𝜋Θmax − min

𝑙 ⋅(x𝑘−x𝑗)]

= 𝑚𝑆(x𝑗)𝑚𝑆(x𝑘) [(
𝑑

∏
𝑛=1

Δ𝜃(𝑛)) ∑
𝑙∈𝐽𝜉

∣𝑚𝐹,2𝜋(Θ𝑙)∣
2 𝑒2𝑖𝜋Θmax − min

𝑙 ⋅(x𝑘−x𝑗)]

= 𝑚𝑆(x𝑗)𝑚𝑆(x𝑘) [(
𝑑

∏
𝑛=1

Δ𝜃(𝑛)) ∑
𝑙∈𝐽𝜉

∣𝑚𝐹,2𝜋(Θ𝑙)∣
2 𝑒2𝑖𝜋Θmax − min

𝑙 ⋅(𝑘−𝑗)] ,

where the last equality is due to

x𝑘 − x𝑗 = ((𝑘1 − 𝑗1)Δ𝑥(1), … , (𝑘𝑑 − 𝑗𝑑)Δ𝑥(𝑑)) ,

and we use the assumption that Δ𝑥(𝑛) = 1 for 𝑛 = 1, … , 𝑑. Moreover,

𝑑
∏
𝑛=1

Δ𝜃(𝑛) =
𝑑

∏
𝑛=1

𝜃(𝑛)
max − 𝜃(𝑛)

min
2𝑁𝑛 + 1

Again, for simplicity reasons, we assume that ∏𝑑
𝑛=1 (𝜃(𝑛)

max − 𝜃(𝑛)
min) = 1, since it is only

a scaling of the eigenvalues and does not change the eigenvectors (which truly are the
quantities of interest here). Thus,

Θmax − min
𝑙 = ( 𝑙1

2𝑁1 + 1
, … , 𝑙𝑑

2𝑁𝑑 + 1
) ,

and
Δ𝜃(𝑛) = 1

2𝑁𝑛 + 1
, 𝑛 = 1, … , 𝑑.
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Then,

𝑚𝑆(x𝑗)𝑚𝑆(x𝑘) [(
𝑑

∏
𝑛=1

1
2𝑁𝑛 + 1

) ∑
𝑙∈𝐽𝜉

∣𝑚𝐹,2𝜋(Θ𝑙)∣
2 𝑒2𝑖𝜋Θ𝑙⋅(𝑘−𝑗)]

= 𝑚𝑆(x𝑗)𝑚𝑆(x𝑘) [(
𝑑

∏
𝑛=1

1
2𝑁𝑛 + 1

) ∑
𝑙∈𝐽𝜉

∣𝑚𝐹,2𝜋(Θ𝑙)∣
2 𝑒2𝑖𝜋( 𝑙1

2𝑁1+1 ,…, 𝑙𝑑
2𝑁𝑑+1 )⋅(𝑘−𝑗)]

We have finally obtained the matrix K, of which we are looking for the eigenvectors
̃𝑣. It is defined component-wise by:

[K]𝑗,𝑘 = 𝑚𝑆(x𝑗)𝑚𝑆(x𝑘) [(
𝑑

∏
𝑛=1

1
2𝑁𝑛 + 1

) ∑
𝑙∈𝐽𝜉

∣𝑚𝐹,2𝜋(Θ𝑙)∣
2 𝑒2𝑖𝜋( 𝑙1

2𝑁1+1 ,…, 𝑙𝑑
2𝑁𝑑+1 )⋅(𝑘−𝑗)] .

The attentive reader will have noticed that the expression inside square brackets cor-
responds exactly to the inverse Discrete Fourier Transform (IDFT, see Section II-5 – The
Fourier transforms for more details).

We denote
IDFT [|𝑚𝐹,2𝜋|2]

the result obtained after the application of the inverse Discrete Fourier Transform to the
function |𝑚𝐹,2𝜋|2 evaluated at discretization points {Θ𝑙}𝑙∈𝐽𝜉

. Then we can rewrite the
matrix K:

[K]𝑗,𝑘 = 𝑚𝑆(x𝑗)𝑚𝑆(x𝑘) IDFT [|𝑚𝐹,2𝜋|2] (𝑘 − 𝑗) . (V-4.13)

We emphasize that the matrix defined by (V-4.13) allows to compute the matrix K
efficiently by using the Fast Fourier Transform (again, see Section II-5 for more details).

Remark V.8

We have not explained why we chose 𝑁𝑛 + 1 discretization points for 𝑥 in dimension
𝑛, and 2𝑁𝑛 + 1 for 𝜉. It can be understood now. It suffices to consider the case 𝑑 = 1
in order to understand it. We have 𝑗, 𝑘 ∈ 𝑅𝑥 = [[0, 𝑁1]], thus 𝑘 − 𝑗 ∈ [[−𝑁1, 𝑁1]].
We want to compute the DFT of ∣𝑚𝐹,2𝜋∣2 at every point 𝑢 ∈ [[−𝑁1, 𝑁1]], thus the
definition of the DFT tells us that we need to discretize ∣𝑚𝐹,2𝜋∣2 using as many points
as there are in [[−𝑁1, 𝑁1]]. In other words, the input and outputs of the DFT must
have the same size for all dimensions. Since there are 2𝑁1 + 1 integers in [[−𝑁1, 𝑁1]],
the 𝜉 variable needs to be decomposed using 2𝑁1 + 1 points of discretization. This
holds for all dimensions. This explains why, if the space variable 𝑥 is discretized using
𝑁𝑛 discretization points along dimension 𝑛, then the variable 𝜉 along dimension 𝑛 has
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to be discretized using 2𝑁𝑛 + 1 discretization points.

Moreover, in dimension greater than one, one cannot index the matrix K with 𝑗 and
𝑘 since they are not indices but multi-indices. Some convention thus has to be set in
order to transform the 𝑑-dimensional index 𝑗 = (𝑗1, … , 𝑗𝑑) into a one-dimensional index

̃𝑗. The convention we choose for ̃𝑗 is to actually count the number of tuples (𝑗1, … , 𝑗𝑑).
But counting these tuples is not enough, we also need to order them so that a given
tuple corresponds to a unique value of ̃𝑗, and vice-verse. To define this order relation, we
compare the first index, then the second, and so on. Hence,

̃𝑗 𝑗 = (𝑗1, … , 𝑗𝑑−1, 𝑗𝑑)
1 (0, … , 0, 0)
2 (0, … , 0, 1)
⋮ ⋮

𝑁𝑑 (0, … , 0, 𝑁𝑑 − 1)
𝑁𝑑 + 1 (0, … , 1, 0)

⋮ ⋮
𝑁1 ⋯ 𝑁𝑑 (𝑁𝑑 − 1, … , 𝑁𝑑−1 − 1, 𝑁𝑑 − 1)

The explicit expression for ̃𝑗 is:

̃𝑗 = 1 + 𝑗𝑑 + 𝑁𝑑𝑗𝑑−1 + 𝑁𝑑𝑁𝑑−1𝑗𝑑−2 + ⋯ + 𝑁𝑑 ⋯ 𝑁2𝑗1.

In order to simplify what follows, suppose 𝑑 = 2. Then, K can be written as a block
matrix:

K =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

K(1,1) K(1,2) ⋯ K(1,𝑁2−2) K(1,𝑁2−1)

K(2,1) K(2,2) ⋯ K(2,𝑁2−2) K(2,𝑁2−1)

⋮ ⋮ ⋯ ⋮ ⋮
K(𝑁1−2,1) K(𝑁1−2,2) ⋯ K(𝑁1−2,𝑁2−2) K(𝑁1−2,𝑁2−1)

K(𝑁1−1,1) K(𝑁1−1,2) ⋯ K(𝑁1−1,𝑁2−2) K(𝑁1−1,𝑁2−1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (V-4.14)

where each block K(𝑟,𝑐) is defined component-wise by

[K(𝑟,𝑐)]𝑚,𝑛 ∶= K𝑗=(𝑟,𝑚),𝑘=(𝑐,𝑛).

Let us now explain why this indexing convention is particularly efficient. In (V-4.13),
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we can write the difference 𝑘 − 𝑗 as:

(
𝑘1 − 𝑗1

𝑘2 − 𝑗2
) .

With the chosen indexing convention, for each submatrix K(𝑟,𝑐), we have

[K(𝑟,𝑐)]
𝑚,𝑛

= 𝑚𝑆(x𝑗=(𝑟,𝑚))𝑚𝑆(x𝑘=(𝑐,𝑛)) IDFT [∣𝑚𝐹,2𝜋∣2] (
𝑐 − 𝑟

𝑛 − 𝑚
) .

This means that, along each diagonal of K(𝑟,𝑐), the value of IDFT is constant: indeed,
𝑐 − 𝑟 is constant in K(𝑟,𝑐), and 𝑛 − 𝑚 is constant along each diagonal of K(𝑟,𝑐). In other
words, each submatrix K(𝑟,𝑐) is a Toeplitz matrix, multiplied row- and column-wise by the
function 𝑚𝑆. The Toeplitz nature of each block K(𝑟,𝑐) allows for efficient computational
storage and complexity. Some more details are given in Section V-6.1 – Leveraging the
Toeplitz nature of the kernel.

This two-dimensional discussion easily generalizes to the multidimensional case with
the same indexing convention: only the last index varies within each block K(𝑟1,…,𝑟𝑑−1) of
K, so each block can be expressed into a Toeplitz matrix and component-wise multipli-
cations.

We have the following easy result:

Proposition V.2

The matrix K enjoys the following properties:

1. Hermitian: K∗ = K

2. Structure: K = 𝐷𝐵𝐷∗, where 𝐵 is a block matrix where each block is Toeplitz,
and 𝐷 is a diagonal matrix.

3. Its eigenvalues are real and its eigenvectors form an unitary basis of ℂ𝑁1⋯𝑁𝑑 .

Proof. For the first point, we use (V-4.13):

[K∗]𝑘,𝑗 = K𝑗,𝑘 = 𝑚𝑆(x𝑗)𝑚𝑆(x𝑘) IDFT [|𝑚𝐹,2𝜋|2] (𝑘 − 𝑗)

= 𝑚𝑆(x𝑗)𝑚𝑆(x𝑘)IDFT [|𝑚𝐹,2𝜋|2] (𝑘 − 𝑗).

Moreover, since |𝑚𝐹,2𝜋|2 is real, we obtain

IDFT [|𝑚𝐹,2𝜋|2] (𝑘 − 𝑗) = IDFT [|𝑚𝐹,2𝜋|2] (𝑗 − 𝑘) .
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Hence,
[K∗]𝑘,𝑗 = 𝑚𝑆(x𝑗)𝑚𝑆(x𝑘) IDFT [|𝑚𝐹,2𝜋|2] (𝑗 − 𝑘) = [K]𝑘,𝑗.

That is, K∗ = K, i.e. K is an Hermitian matrix.
The second point has already been mentioned earlier: the diagonal matrix 𝐷 follows

from (V-4.13), and it corresponds to the component-wise multiplication by the function
𝑚𝑆(x𝑗) for each row 𝑗 and by 𝑚𝑆(x𝑘) for each column 𝑘 of K. Hence K is of the form
𝐷𝐵𝐷∗, where 𝐵 is some matrix. The block nature of 𝐵, where each block is a Toeplitz
matrix, follows from (V-4.14).

The third point is a classical result in linear algebra: for any normal matrix, there
exists an orthonormal basis of eigenvectors. See for instance [2, Theorem 7.31].

Remark V.9

In all of the numerical examples of Section V-5, we will use the simplifying assumptions
that allowed us to write K as in (V-4.13). The assumption ∏𝑑

𝑛=1 (𝜃(𝑛)
max − 𝜃(𝑛)

min) = 1
can simply be stated in the following way:

supp 𝑚𝐹 ⊂ [−𝜋, 𝜋]𝑑 ⟺ supp 𝑚𝐹,2𝜋 ⊂ [−1
2

, 1
2

]
𝑑

.

The assumption Δ𝑥(𝑛) = 1 for 𝑛 = 1, … , 𝑑, simply is a change of coordinates: if
Δ𝑥(𝑛) ≠ 1, we consider a scaling of the space grid 𝑅𝑥, so that the grid size after
scaling is 1.

We end this Chapter with a remark concerning notation: we are interested in eigenpairs
of the matrix K of finite-dimension. With a slight abuse of notation, we’ll denote 𝜓𝑖 the
eigenvectors, which is the same notation as used for the eigenfunctions of 𝒦. Whether
we are talking about an eigenvector or an eigenfunction will always be clear from the
context: if we are talking about the continuous concentration operator 𝒦, 𝜓𝑖 will denote
an eigenfunction, and if we are talking about the discretized version of 𝒦 (i.e. the matrix
K), then 𝜓𝑖 will denote an eigenvector.
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It has already been mentioned in Section V-2.2.3 – Numerical difficulties that the
main difficulty in obtaining the eigenvectors of the matrix K defined by (V-4.13) is the
fact that the eigenvalues are very tightly packed close to one or zero. Figure V-2.1b is an
illustration of this phenomenon.

In this Chapter, we will see that the eigenvalues grouped together are often several
simple eigenvalues, and not a single one with a high multiplicity. This is a very important
fact, because it means we can generally associate one eigenvector to each eigenvalue.
This would not be possible if there was a multiple eigenvalue, in this case we could only
associate an eigenspace to the eigenvalue. The fact that several eigenvalues are the same
in the Slepian toy-model can then be understood as a “degeneracy” of the generalized
kernel (V-4.5), where the “degeneracy” is due to having indicator functions as filters 𝑚𝑆

and 𝑚𝐹.

Once we know that the eigenvalues actually are of multiplicity one, we can hope for
numerical schemes to be able to recover (at least approximately!) the desired eigenvectors.

We start by showing that indeed, each eigenvalue is of multiplicity one, but they get
packed very tightly when indicator filters are chosen. Moreover, by approximating the
indicator functions by some other function, we are able to “separate” the eigenvalues and
get good approximations of the desired eigenvectors of the matrix K. This is the first
numerical procedure we present. Then, we give a second numerical procedure to obtain
approximate eigenvectors of K. It is more expensive than the first one, but the approxi-
mation can be quantified. We end this Chapter by obtaining eigenvectors for previously
unstudied filters, with qualitatively good results. The “qualitative” property is unfortu-
nately only visible on numerical results, since the eigenvectors obtained must answer the
following question: Do the eigenvectors look like linear combinations of some of them, or
do they look like “single” ones? This can be understood for instance on Figure V-2.1a,
where the solid and dash curves seem more “mixed” than the dot-dash curve.

For the two procedures mentioned above, each family of approximate eigenvectors that
we obtain is an acceptable answer to the Spectral Concentration Problem.
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V-5.1 Perturbed operator

In order to show that the eigenvalues are each of multiplicity one, we consider a
perturbation 𝐾 [𝜀] of the concentration kernel 𝐾 defined by (V-4.5), depending on the
perturbation parameter 𝜀 > 0:

𝐾 [𝜀](𝑥, 𝑦) ∶= 𝑚[𝜀]
𝑆 (𝑥)𝑚[𝜀]

𝑆 (𝑦) ∫
ℝ𝑑

𝑒𝑖𝜉⋅(𝑦−𝑥) |𝑚𝐹(𝜉)|2 𝑑𝜉. (V-5.1)

Only the space filter 𝑚𝑆 is perturbed, its perturbation being written 𝑚[𝜀]
𝑆 , and the Fourier

filter 𝑚𝐹 is left unmodified 1. The perturbed space filter 𝑚[𝜀]
𝑆 is assumed to be such that

𝑚[𝜀]
𝑆 → 𝑚𝑆 as 𝜀 → 0, in the 𝕃2(ℝ𝑑; ℂ) norm.

We can assume that 𝑚[𝜀]
𝑆 ∈ 𝕃2(ℝ𝑑; ℂ) since it holds for 𝜀 > 0 small enough by con-

vergence. Thus, the kernel 𝐾 [𝜀] satisfies the same hypotheses as 𝐾 and the generalized
framework from Section V-4 applies. In particular, Proposition V.1 applies to the per-
turbed operator 𝒦[𝜀] defined for 𝑓 ∈ 𝕃2(ℝ𝑑; ℂ) by:

(𝒦[𝜀]𝑓)(𝑥) ∶= ∫
ℝ𝑑

𝐾 [𝜀](𝑥, 𝑦)𝑓(𝑦)𝑑𝑦. (V-5.2)

We obtain that the countable family of eigenfunctions of 𝒦[𝜀] is an orthonormal basis
of 𝕃2(ℝ𝑑; ℂ) of which all elements are concentrated in the Fourier domain. Moreover,
depending on the application at hand, a small modification of the space mask may yield
an acceptable answer. Hence, one could use the eigenfunctions obtained for some 𝜀 > 0
as an approximation of the true eigenfunctions (corresponding to 𝜀 = 0).

Now is an appropriate time to discuss why the perturbed operator is of particular
interest. For the time being, we consider the one-dimensional Slepian toy model 2, and
recall the behavior of eigenvalues which was noticed in numerical experiments (i.e. for the
discretized toy model) by Slepian as early as 1961: when indicator filters are considered,
most of the eigenvalues are very tightly packed close to zero or close to one, and only a very
small number of eigenvalues is in-between. More rigorous studies have been done since,
see for instance [24] for the best current bound on the number of eigenvalues between zero
and one. Using his commuting differential operator, Slepian was able to find the correct
eigenvectors. A qualitative aspect of the 𝑛-th eigenvector 𝜓𝑛 is that, as 𝑛 increases, the
associated eigenvalue 𝜆𝑛 decreases and the support of 𝜓𝑛 gets larger. To illustrate this

1. This is mainly to have an easier numerical construction of the discretized operator, since the filter
𝑚𝐹 needs to be Fourier transformed. By keeping the same 𝑚𝐹, the Fourier transform only has to be
done once for all perturbations.

2. See Section V-2.1 – The Slepian “toy model”.

263



Part V, Chapter V-5 – I like to move it move it

qualitative aspect, the first 8 eigenvectors are given for the discretized Slepian toy model
in Figure V-5.1.

The first five eigenvectors have very close eigenvalues because they can go to zero
sufficiently fast at the boundaries of the interval. Thus, they are all seen as numerically
very concentrated. On the other hand, the last three eigenvectors cannot go sufficiently
fast to zero at the boundaries of the interval, and their 𝕃2(ℝ \ [−1, 1]) norm must be
nonzero. This is why their associated eigenvalues get smaller and smaller.

The heart of the problem lies in the first eigenvectors, because there is numerically
no way to distinguish them using their concentration ratio alone. This is partly due to
the indicator mask in space, because the same “importance” is given to the first and fifth
eigenvectors, even though the former is qualitatively more concentrated than the latter.
By modifying slightly the space mask, it is possible to change this and to impose the
concentration around the origin (more generally, around any point in the interval).

Remark V.10

We now focus on the case of binary filters, that is

𝑚𝑆 = 1𝐷1
and 𝑚𝐹 = 1𝐷2

,

for some subsets 𝐷1, 𝐷2 ⊂ ℝ𝑑.

Take 𝑚[𝜀]
𝑆 = (1 + 𝜀 cos(𝜔⋅)) 1[−1,1]. The parameter 𝜔 will be called the perturbation

frequency. The parameter 𝜀 can be understood as the space perturbation, while 𝜔 is the
Fourier perturbation. Conceptually, we want 𝜀, 𝜔 small: it should be clear for 𝜀, and for 𝜔
it is due to the fact that the application of the operators ℳ𝑆 and ℳ𝐹 actually constrains
the Fourier transform of 𝑚𝑆𝑓, and not only the Fourier transform of 𝑓. Thus, to obtain
results similar to those we know in the 1d case, we want the modification due to the
perturbation to be as small as possible. This is why both 𝜀 and 𝜔 have to be small.

Using this perturbed filter 𝑚[𝜀]
𝑆 , we can easily obtain numerically the eigenvalues. They

are given in Figure V-5.2. To the contrary of the unperturbed eigenvalues given in Figure
V-5.2a, those of the perturbed problem given in Figure V-5.2b are clearly separated.

Still with the same perturbed filter 𝑚[𝜀]
𝑆 , the eigenvectors of the perturbed problem can

be obtained more easily than those of the unperturbed problem. In Figure V-5.3 we plot
the first sixteen eigenvectors (associated to the sixteen highest eigenvalues) in the space
domain for the perturbed problem (blue solid curve). The yellow dash curve corresponds to
the exact eigenvectors obtained using Slepian’s commuting differential operator solution.
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Figure V-5.1 – First eight eigenvectors for the Slepian toy model, obtained via the com-
muting differential operator. Numerical parameters are 𝑁 = 100, Ω = 0.05 ⋅ 2𝜋.
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Figure V-5.2 – Eigenvalues for the perturbed filter 𝑚[𝜀]
𝑆 = (1 + 𝜀 cos(𝜔⋅)) 1[−1,1], with

𝜔 = 0.1 and 𝜀 ∈ {0, 0.1}.

In Figure V-5.4 we plot their Fourier transform, as well as vertical dash lines indicating
the boundaries of the Fourier mask interval [−Ω, Ω].

In Figures V-5.3 and V-5.4, one can see that the results are relatively satisfying: they
are qualitatively good in the space domain (Figure V-5.3) and the Fourier transform is
indeed restricted to the given interval [−Ω, Ω] (Figure V-5.4). More precisely, in space, the
eigenvectors are localized correctly, they exhibit the expected number of main “bumps”,
and the “spread” of the eigenvector labelled 𝑛 is indeed growing with 𝑛: 𝜆𝑖 > 𝜆𝑗 for
𝑖 < 𝑗. Qualitatively, the eigenvector 𝑖 is more localized than the eigenvector 𝑗. In the
Fourier domain, the expected behavior is that the eigenvectors are restricted to the interval
[−Ω, Ω], which is indeed the case.

The fact that the eigenvectors of the perturbed problem correspond qualitatively to
those we are looking for is due to the fact that the eigenvalues are “far” from one another
in the perturbed case, given that 𝜀 is sufficiently far from zero.

There are however two main issues with this approach and the perturbed space mask
𝑚[𝜀]

𝑆 of the form given previously:

1. the eigenvectors to the perturbed problem exhibit oscillations which are absent from
the solution to the nonperturbed problem,

2. the eigenvectors are more concentrated around the origin than expected.

The first point does not seem to be linked to the particular form of the perturbed
filter 𝑚[𝜀]

𝑆 , our experiments showed that oscillations also occur if one takes 𝑚[𝜀]
𝑆 (𝑥) =

(1 + 𝜀𝑒−𝜀 𝑥2
2 ) 1[−1,1]: the results are displayed in Figure V-5.5.

The second point is due to our specific perturbation function, and the fact that the
amplitude of the filter is larger around the origin. Eigenvectors maximizing the concen-
tration ratio with respect to this perturbed filter will then be concentrated around the
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Figure V-5.3 – Results obtained with 𝑁 = 151, Ω = 0.1 ⋅ 2𝜋, with the following perturba-
tion parameters: 𝜀 = 0.1 and 𝜔 = 0.1. Eigenvectors are plotted in the space domain. The
space filter is 𝑚[𝜀]

𝑆 (𝑥) = (1 + 𝜀 cos(𝜔𝑥))1[−1,1].
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Figure V-5.4 – Results obtained with 𝑁 = 151, Ω = 0.1 ⋅ 2𝜋, with the following pertur-
bation parameters: 𝜀 = 0.1 and 𝜔 = 0.1. Eigenvectors are plotted in the Fourier domain.
The space filter is 𝑚[𝜀]

𝑆 (𝑥) = (1 + 𝜀 cos(𝜔𝑥))1[−1,1].
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origin. For instance, if one decides to take 𝑚[𝜀]
𝑆 (𝑥) = (1 + 𝜀 sin(𝜔𝑥)) 1[−1,1], the results are

totally different, see Figure V-5.6. The difference is that the sine-based filter has higher
amplitude close to 1, so the most concentrated eigenvectors will be in a region close to 1.

The difference in the results can be easily explained: the function 𝑥 ↦ 1 + 𝜀 cos(𝜔𝑥) is
highest around the origin, thus the corresponding eigenvectors will concentrate here. On
the contrary, the function 𝑥 ↦ 1 + 𝜀 sin(𝜔𝑥) is highest at the right of the interval, thus
the corresponding eigenvectors will concentrate on the right of the interval. See Figure
V-5.7.

The key takeaway from these numerical experiments is that the seemingly multiple
eigenvalue 𝜆 ≈ 1 in Figure V-2.1b is simply several simple eigenvalues which coincidentally
have the same value. This is very important in the sense that it justifies looking for a
particular eigenvector associated to each eigenvalue. Having the perturbation in mind: if
one perturbs the kernel, eigenvalues are distinct and eigenvectors have quantitatively the
correct behavior, and as the perturbation parameter goes to zero we expect to be able to
keep track of these particular eigenvectors. This naturally calls for the use of eigenvector
continuation…

V-5.2 Eigenvector continuation

The eigenvector continuation is a technique which consists in relating the eigenvectors
and eigenvalues derivatives, giving a system of ordinary differential equations (ODE), and
then integrating these ODE. Basically, these equations are obtained by differentiating the
(right) eigendecomposition and using left and right eigenvectors. We refer to [23] for the
details.

The motivation in this Section is the following: we saw previously that we are able
to obtain the eigenvectors and eigenvalues of the concentration operator 𝒦 associated
to a perturbed space filter 𝑚[𝜀]

𝑆 depending on parameters 𝜀, 𝜔. If 𝜀 = 0, we recover the
unperturbed space filter. We then want to find the eigenvectors of the concentration
operator 𝒦 associated to 𝑚[𝜀]

𝑆 , and let 𝜀 → 0. Since the eigenvectors and eigenvalues will
also depend on 𝜀, we want to apply eigenvector continuation in the limit 𝜀 → 0.

The main equations for an Hermitian matrix 𝑀(𝜀) ∈ ℝ𝑛×𝑛 which depends on a
parameter 𝜀 ∈ ℝ, with eigenvectors 𝑢𝑖(𝜀) associated to 𝑛 distinct eigenvalues 𝜆𝑖(𝜀) are

�̇�𝑖(𝜀) = 𝑢∗
𝑖 (𝜀)�̇�(𝜀)𝑢𝑖(𝜀),

�̇�𝑖(𝜀) = ∑
𝑗≠𝑖

𝑢∗
𝑗(𝜀)�̇�(𝜀)𝑢𝑖(𝜀)
𝜆𝑖(𝜀) − 𝜆𝑗(𝜀)

𝑢𝑗(𝜀),
(V-5.3)
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Figure V-5.5 – Results obtained with 𝑁 = 151, Ω = 0.1 ⋅ 2𝜋, with the following perturba-
tion parameters: 𝜀 = 10−1. Eigenvectors are plotted in the space domain. The perturbed
space mask is 𝑚[𝜀]

𝑆 (𝑥) = (1 + 𝜀𝑒−𝜀 𝑥2
2 ) 1[−1,1].
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Figure V-5.6 – Results obtained with 𝑁 = 151, Ω = 0.1 ⋅ 2𝜋, with the following perturba-
tion parameters: 𝜀 = 0.1 and 𝜔 = 0.1. Eigenvectors are plotted in the space domain. The
perturbation filter 𝑚[𝜀]

𝑆 uses a sine function.
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Figure V-5.7 – Cosine and sine-based perturbations, with 𝜔 = 10−1.

for 𝑖 = 1, … , 𝑛. The dot notation ̇𝐴(𝜀) denotes the derivative of the quantity 𝐴 with
respect to the variable 𝜀.

Numerically, one would use these equations as follows:

1. Start from an eigendecomposition 𝑀(𝜀)𝑈(𝜀) = 𝑈(𝜀)Λ(𝜀) of the perturbed matrix
𝑀(𝜀), with 𝜀 > 0. We denote 𝑈(𝜀) = (𝑢1, … , 𝑢𝑛)(𝜀), and Λ(𝜀) = diag(𝜆1, … , 𝜆𝑛)(𝜀).
This raises no issue since the eigenvalues are distinct and the eigenvectors cannot
be linear combinations of the others, thus it is easy to obtain eigenvectors.

2. Compute the derivatives of the eigenvalues and eigenvectors using (V-5.3).

3. Use a numerical integrator over the interval [𝜀 − ℎ, 𝜀], in order to approximate
𝑈(𝜀 − ℎ) and Λ(𝜀 − ℎ).

4. Repeat this process until 𝑈 and Λ are approximated for 𝜀 sufficiently close to zero.

When using the procedure described above, one may lose the unitary property that
we initially had for 𝑈(𝜀), namely 𝑈(𝜀)∗𝑈(𝜀) = 𝐼, depending on the time-integrator used.
In order to impose this property, we express 𝑡 ↦ 𝑈(𝑡) as a matrix exponential. This idea
comes from [9, Sect. 2.2] and has proven useful in a theoretical context. Lemma V.5 shows
the reasoning underlying the numerical algorithm we have in mind.
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Lemma V.5

Let 𝑈 ∈ ℂ𝑛×𝑛 a unitary matrix, and 𝐴 ∈ ℂ𝑛×𝑛 an anti-Hermitian matrix. Then the
matrix 𝑒𝐴𝑈 is unitary.

Proof.
(𝑒𝐴𝑈)∗ 𝑒𝐴𝑈 = 𝑈 ∗𝑒𝐴∗𝑒𝐴𝑈 = 𝑈 ∗𝑒−𝐴𝑒𝐴𝑈 = 𝑈 ∗𝑈 = 𝐼,

and
𝑒𝐴𝑈 (𝑒𝐴𝑈)∗ = 𝑒𝐴𝑈𝑈 ∗𝑒𝐴∗ = 𝑒𝐴𝑒−𝐴 = 𝐼.

We can interpret the matrix 𝐴 as a kind of logarithm of 𝑈. For the numerical algorithm,
we write

̇𝑈(𝜀) = 𝑈(𝜀)𝐴(𝜀) (V-5.4)

and we suppose 𝐴 is an anti-hermitian matrix, i.e. 𝐴∗ = −𝐴. Equation (V-5.4) may seem
like a condition imposed on 𝑈, but we are actually just using the fact that for any two
vectors 𝑈, 𝑉, we can find an (invertible) matrix 𝐴 such that 𝑉 = 𝐴𝑈. Thus, the only
assumption is that 𝐴 is anti-Hermitian, but we will check with its expression (V-5.7) that
it is indeed the case.

Now differentiate the eigendecomposition of 𝑀(𝜀):

𝑑
𝑑𝜀

(𝑀(𝜀)𝑈(𝜀)) = 𝑑
𝑑𝜀

(𝑈(𝜀)Λ(𝜀))

⟺ �̇�(𝜀)𝑈(𝜀) + 𝑀(𝜀) ̇𝑈(𝜀) = ̇𝑈(𝜀)Λ(𝜀) + 𝑈(𝜀)Λ̇(𝜀)

⟺ �̇�(𝜀)𝑈(𝜀) + 𝑀(𝜀)𝑈(𝜀)𝐴(𝜀) = 𝑈(𝜀)𝐴(𝜀)Λ(𝜀) + 𝑈(𝜀)Λ̇(𝜀).

Multiply by 𝑈∗(𝜀) on the left, and use the relations 𝑀(𝜀)𝑈(𝜀) = 𝑈(𝜀)Λ(𝜀) and 𝑈 ∗(𝜀)𝑈(𝜀) =
𝐼:

𝑈 ∗(𝜀)�̇�(𝜀)𝑈(𝜀) + 𝑈 ∗(𝜀)𝑀(𝜀)𝑈(𝜀)𝐴(𝜀) = 𝑈 ∗(𝜀)𝑈(𝜀)𝐴(𝜀)Λ(𝜀) + 𝑈 ∗(𝜀)𝑈(𝜀)Λ̇(𝜀)

⟺ 𝑈 ∗(𝜀)�̇�(𝜀)𝑈(𝜀) + Λ(𝜀)𝐴(𝜀) = 𝐴(𝜀)Λ(𝜀) + Λ̇(𝜀)

⟺ 𝑈 ∗(𝜀)�̇�(𝜀)𝑈(𝜀) = [𝐴(𝜀), Λ(𝜀)] + Λ̇(𝜀), (V-5.5)

where [𝐴, 𝐵] ∶= 𝐴𝐵 − 𝐵𝐴 is the matrix commutator. We have the following easy result:
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Lemma V.6

Let 𝐴 ∈ ℂ𝑛×𝑛 a matrix, and 𝐷 ∈ ℂ𝑛×𝑛 a diagonal matrix. Then, for all 𝑖, 𝑗 = 1, … , 𝑛,

[𝐴, 𝐷]𝑖,𝑗 = 𝐴𝑖,𝑗 (𝑑𝑗 − 𝑑𝑖)

Proof. It is straightforward by writing explicitely the matrix products.

Remark V.11: Notation

For a square matrix 𝐶 ∈ ℂ𝑛×𝑛, we denote the vector composed of the diagonal ele-
ments of 𝐶 by diag(𝐶).

As a consequence of Lemma V.6, diag([𝐴(𝜀), Λ(𝜀)]) = 0, since Λ(𝜀) is the diagonal
matrix with eigenvalues of 𝑀(𝜀) on its diagonal. Hence (V-5.5) yields

Λ̇(𝜀) = 𝑈 ∗(𝜀)�̇�(𝜀)𝑈(𝜀) ⟺ diag (Λ̇(𝜀)) = diag (𝑈 ∗(𝜀)�̇�(𝜀)𝑈(𝜀)) , (V-5.6)

where the equivalence is due to Λ(𝜀) being diagonal. On the other hand, for 𝑖 ≠ 𝑗,

[𝐴(𝜀), Λ(𝜀)]𝑖,𝑗 = (𝑈 ∗(𝜀)�̇�(𝜀)𝑈(𝜀) − Λ̇(𝜀))
𝑖,𝑗

= (𝑈∗(𝜀)�̇�(𝜀)𝑈(𝜀))
𝑖,𝑗

.

We then obtain:

𝐴𝑖,𝑗(𝜀) = 1
𝜆𝑗(𝜀) − 𝜆𝑖(𝜀)

(𝑈∗(𝜀)�̇�(𝜀)𝑈(𝜀))
𝑖,𝑗

, 𝑖 ≠ 𝑗. (V-5.7)

Since the matrix 𝑀(𝜀) is Hermitian, the matrix �̇�(𝜀) is also Hermitian. Thus, using
(V-5.7), we get that 𝐴 is anti-Hermitian.

Over a small interval [𝜀 − ℎ, 𝜀], 0 < ℎ < 𝜀, starting from Λ(𝜀) we can get an approxi-
mation to Λ(𝜀 − ℎ) using (V-5.6):

Λ(𝜀 − ℎ) ≈ Λ(𝜀) − ℎΛ̇(𝜀).

The diagonal matrix Λ(𝜀 − ℎ) contains on its diagonal the approximate eigenvalues
{𝜆𝑗(𝜀 − ℎ)}𝑛

𝑗=1. In order to approximate the matrix 𝑈(𝜀 − ℎ) containing the eigenvectors
{𝑢𝑗(𝜀 − ℎ)}𝑛

𝑗=1, we shall use (V-5.4) and approximate 𝐴(𝜎) by 𝐴(𝜀) for 𝜎 ∈ [𝜀 − ℎ, 𝜀]. We
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then obtain:

̇𝑈(𝜎) ≈ 𝑈(𝜎)𝐴(𝜀) ⟹ 𝑈(𝜀 − ℎ) ≈ 𝑈(𝜀)𝑒−ℎ𝐴(𝜀) ∶= ̃𝑈(𝜀 − ℎ). (V-5.8)

By using the anti-Hermitian character of 𝐴(𝜀) combined with Lemma V.5, we deduce that
̃𝑈(𝜀 − ℎ) is unitary.

The interval [𝜀−ℎ, 𝜀] above was not chosen at random: we want to obtain a numerical
procedure, and we will need a discretization of the interval [0, 𝜀]. Naturally, we divide
this interval into 𝐿 subintervals [𝑙ℎ, (𝑙 + 1)ℎ], where 𝑙 = 𝜀

𝐿+1 , and use formulas (V-5.6),
(V-5.7) and (V-5.8) over each subinterval.

The main advantange with this algorithm is that the unitary property is conserved at
all times, but the cost to pay is to compute a matrix exponential for every subinterval. If
the matrix size 𝑛 becomes large, this computation may become very expensive.

In practice, in our case, one quickly faces an important issue: these equations hold
for distinct eigenvalues, and if the eigenvalues are too close to each other, the division by
𝜆𝑖 − 𝜆𝑗 fails. Even though this difference is nonzero, it may become too small to obtain
reliable numerical results.

V-5.3 Varying the space mask

The content of this section has been designed specifically for space masks of the form
𝑚𝑆 = 1𝐷1

and Fourier masks of the form 𝑚𝐹 = 1𝐷2
, for some some finite-volume sub-

sets 𝐷1 and 𝐷2 of ℝ𝑑. We start by studying (again) the one-dimensional toy model, for
which 𝐷1 = [−𝑇 , 𝑇 ] and 𝐷2 = [−Ω, Ω]. We observe, through numerical experiments, that
studying the spectral concentration problem on a scaled version of the interval [−𝑇 , 𝑇 ]
allows to separate eigenvalues enough so that eigenvectors can easily be obtained approx-
imately. This fact is the core idea of the numerical procedure to be presented, which gives
approximate eigenvectors.

This idea can be generalized to higher dimensional settings, the only difference is
that it can be a little trickier to find a scaled version of an arbitrary finite-size subset
𝐷1 ⊂ ℝ𝑑. Moreover, depending on the scaling of 𝐷1, some parts of 𝐷1 can be emphasized
in the search of eigenvectors. An estimate of the error between the exact and approximate
eigenvectors is also given.

We end this section with several one- and two-dimensional examples. They show that
approximate eigenvectors can indeed be recovered in the cases where an application of
classical eigensolvers fail to yield satisfying results.
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V-5.3.1 Dimension 𝑑 = 1

We consider in this section a particular type of perturbation, which consists in a scaling
of the nonperturbed space mask. For the toy model in dimension one, the nonperturbed
space mask is

𝑚𝑆(𝑥) = 1[−1,1].

We choose a perturbed space mask of the form

𝑚[𝜀]
𝑆 (𝑥) = 1[−𝜇(𝜀),𝜇(𝜀)]. (V-5.9)

The function 𝜇 is such that 𝜇 → 1 as 𝜀 → 0, and 𝜇 → 0 as 𝜀 → +∞. In the following, we
have chosen

𝜇(𝜀) = 1
(1 + 𝜀4)1/4 ,

and this function is plotted in Figure V-5.8. The choice of 𝜇 is rather arbitrary, but in
practice it is desirable to have a flat curve around zero and a slope that is not too steep
far from zero.

10−1 101

ε

0.0

0.2

0.4

0.6

0.8

1.0

µ
(ε

)

Figure V-5.8 – Scaling
𝜇(𝜀) = (1 + 𝜀4)−1/4.

A phenomenon that we have already illustrated is the fol-
lowing: when 𝜀 ≫ 1 (i.e. 𝜇(𝜀) ≪ 1), there is no problem in
obtaining the eigenvectors since the eigenvalues are distinct
and well separated. When 𝜀 → 0 (i.e. 𝜇(𝜀) → 1), most of the
eigenvalues get packed together: some of them around one, and
most of them around zero.

Let us try to understand (once again!) the reason behind
this phenomenon. We consider the one-dimensional framework
of Section V-2.1 – The Slepian “toy model”, and a fixed given
Fourier filter 𝑚𝐹 = 1𝐷2

. Suppose that the perturbed space
filter is of the form given by (V-5.9). If 𝜀 is small, the intervall
[−𝜇(𝜀), 𝜇(𝜀)] will be “large”, thus many orthogonal functions
with Fourier support in 𝐷2 will fit in [−𝜇(𝜀), 𝜇(𝜀)], and their

tails 3 will be very small. In this case, we expect many eigenvalues (or concentration ratios,
they are the same quantity) to be close to 1. On the other hand, if 𝜀 is large, the tails of the
orthogonal functions with Fourier support in 𝐷2 will be very big, and all the eigenvalues
will be close to 0.

Another way of rephrasing this idea is that the Fourier filter 𝑚𝐹 gives a bound on
how fast the function can vary: basically, if 𝐷2 = [−Ω, Ω], the variations of the function
cannot be faster than those of 𝑥 ↦ cos(Ω𝑥).

3. The part of the function which is outside [−𝜇(𝜀), 𝜇(𝜀)].
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Remark V.12

The above sentence is only true in the context of the one-dimensional toy model.
Indeed when discretizing this particular case with space mask 𝑚𝑆 = 1[−𝑇 ,𝑇 ], Slepian
studied eigenvectors within the interval [−𝑇 , 𝑇 ]. Because only the interval of interest
is studied, it is just as if there was no space mask, thus the Fourier mask applies
only to the Fourier transform of the eigenvector 𝜓. In the general case, it should be
applied to the Fourier transform of 𝑚𝑆𝜓, and it is why the above sentence is specific
to the one-dimensional toy model. However, it is a pretty good visual explanation of
the phenomenon observed.

So, if [−𝜇(𝜀), 𝜇(𝜀)] is small, the function will not have “enough room” to go to zero
on the boundary of the interval. We already illustrated this phenomenon in Figure V-5.1:
the first five eigenvectors go sufficiently fast to zero so that their eigenvalues are 𝜆 ≈ 1,
while the three last eigenvectors cannot be zero at ±1, so their eigenvalues are 𝜆 < 1.

This “coordination” between the space and Fourier masks was already made clear in
the first paper by Slepian and Pollak [46], where they noted that the eigenvalues only
depend on the product 𝑊𝑇.

What is particularly interesting to us is the behavior of those eigenvalues as functions
of the product Ω𝑇: they all converge to zero as this product goes to zero, but the smallest
eigenvalues converge faster to zero. This is illustrated in Figure V-5.9a, where all the
eigenvalues are plotted for several values of 𝜀: there are more eigenvalues far from zero
when Ω𝜇(𝜀) is large than when Ω𝜇(𝜀) is small. The space filters corresponding to these
values of 𝜀 are given Figure V-5.9b.

When 𝜀 ≫ 1, the support [−𝜇(𝜀), 𝜇(𝜀)] of 𝑚[𝜀]
𝑆 is very small, and only the eigenvectors

very concentrated around the origin may have a large associated concentration ratio. For
example, let’s look at 𝜀 = 100.5 in Figure V-5.9: the space mask corresponds to the solid
blue line in Figure V-5.9b, and its support is roughly [−0.3, 0.3]. This is the smallest
support in this Figure. If we now look at Figure V-5.9a, the associated eigenvalues are
represented by blue squares. There are only three eigenvalues close to one, and they can
be distinguished very easily. In this case, it will be very easy to obtain the eigenvectors.
On the contrary, if we look at the green dot-dash line (𝜀 = 10−1) in Figure V-5.9b, many
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Figure V-5.9 – Eigenvalues (left) and spacemask (right) corresponding to several values
of the parameter 𝜀.
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eigenvalues (green asterisks 4
🤡

) are gathered close to one. In this case, it will be difficult
to distinguish eigenvectors. Between these two extreme cases, we note that, as 𝜀 decreases,
the support [−𝜇(𝜀), 𝜇(𝜀)] of 𝑚[𝜀]

𝑆 gets larger and larger, and the number of eigenvalues
close to one increases.

This is at the heart of the procedure we will describe now: we start from a very narrow
space mask, for which only a very small number of eigenvalues are close to one. We can
easily obtain the most significant eigenvector 𝑣 of the “scaled matrix” K[𝜀], and then check
how this eigenvector is concentrated by computing the concentration ratio

𝛼 = 𝑣∗K[0]𝑣
𝑣∗𝑣

.

with respect to the true concentration matrix K[0].
If this concentration ratio 𝛼 is close enough to the exact eigenvalue, say within a

tolerance 𝜂 > 0, we save this eigenvector and proceed to the next one.

Remark V.13

We call exact eigenvalues the eigenvalues of the unperturbed operator K[0]. It is im-
portant to note and understand that the whole problem lies in the computation of
eigenvectors, and that obtaining the eigenvalues precisely is not a problem at all. This
is why we can safely compare the concentration ratio 𝛼 with the largest eigenvalue of
K[0].

The next one is obtained by looking at an eigenvector associated to the eigenvalue of
highest magnitude, and such that this eigenvector is orthogonal to the previously saved
one. If the concentration ratio is not close enough to the exact eigenvalue, we let 𝜀 be a
little smaller and repeat this. The whole procedure is summed up in Algorithm 6.

It is clear from the algorithm that the set of vectors obtained at the end is an or-
thonormal basis. Moreover, the concentration ratios we obtain are as close to the true
eigenvalues of K[0] as desired, thanks to the numerical threshold 𝜂. In Algorithm 6, the
number of recorded vectors can also be chosen, so that one is able to only compute the

4. And not Astérix
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most significant eigenvectors. This can even be done “on-the-fly”, by stopping the algo-
rithm as soon as the concentration ratio becomes too small. Moreover, since we are only
interested in the eigenvector associated to the largest eigenvalue of K[𝜀] (with orthogo-
nality conditions), one can take advantage of the Toeplitz nature of the matrix and, for
instance, use the Power Method efficiently.

Remark V.14

We can summarize Algorithm 6 as follows: it performs an approximate eigendecom-
position of the unperturbed operator K[0], and the approximation is made so that it
bypasses the numerical issues caused by the very close eigenvalues of K[0]. It is more
stable than usual eigendecomposition algorithms in the following sense: two different
algorithms (and most possibly two applications of the same algorithm) will yield dif-
ferent sets of eigenvectors, while Algorithm 6 will always give the same eigenvectors.
Moreover, Algorithm 6 is built upon usual eigenalgorithms which makes it easy to un-
derstand and use. The method used to obtain Algorithm 6 was based on the physical
interpretation of the spectral concentration problem.
However, now that was have devised this algorithm, we could try to apply it to other
situations where we lack physical meaning: given an arbitrary matrix with very close
eigenvalues, how to obtain associated eigenvectors in a stable way? Algorithm 6 is a
possible answer, and it will yield approximate eigenvectors. However, some numerical
tests have to be performed in more general situations to check that Algorithm 6 indeed
yields satisfying results.

Another way of looking at Algorithm 6 consists in saying that, among all linear com-
binations of eigenvectors associated to an eigenvalue ≈ 1, we are looking for the ones with
increasing variance.

Let us discuss now the reasoning behind Algorithm 6. Before that, we note that for
any vector 𝑣 ∈ ℂ𝑛, we define |𝑣|2 ∶=

√
𝑣∗𝑣 .

Lemma V.7

Let 𝐴 be an Hermitian matrix, and 𝑤 ∈ ℂ𝑁 such that |𝑤|2 = 1. Let 𝜆1 ∈ ℝ the largest
eigenvalue (real) of 𝐴, then

𝑤∗𝐴𝑤 ≤ 𝜆1.
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Algorithm 6 Varying space mask method (Dimension 𝑑 = 1)
Input
— 𝜇(𝜀): a scaling function, such that 𝜇 is decreasing, 𝜇(0) = 1, 𝜇(+∞) = 0.
— 𝜀 ↦ K[𝜀]: the perturbed concentration matrix, of size 𝑁 × 𝑁.
— 𝑀: number of eigenvectors we are looking for, 𝑀 ≤ 𝑁.
— 𝜀max: maximum value of the concentration parameter.
— 𝑇: number of subdivisions of the interval [0, 𝜀max].
— 𝜆(0) = (𝜆1(0), … , 𝜆𝑁(0)): vector of eigenvalues for the nonperturbed matrix 𝐾.
— 𝜂: numerical tolerance to compare two eigenvalues.
ℎ ∶= 𝜀max/𝑇
𝑞 ∶= 0: this is the number of recorded eigenvectors.
𝛼[𝑠𝑎𝑣𝑒𝑑] = (𝛼[𝑠𝑎𝑣𝑒𝑑], … , 𝛼[𝑠𝑎𝑣𝑒𝑑]

𝑀 ): the vector to hold all the concentration ratios.
𝑣[𝑠𝑎𝑣𝑒𝑑] = (𝑣[𝑠𝑎𝑣𝑒𝑑]

1 , … , 𝑣[𝑠𝑎𝑣𝑒𝑑]
𝑀 ): the matrix to hold all the recorded eigenvectors

for 𝜀 = 𝜀max, 𝜀max − ℎ, … , 0 do
Find (𝜅, 𝑢) the most significant eigenpair of K[𝜀] (i.e. the one associated to the

eigenvalue of highest magnitude), where 𝑢 ⟂ Span {𝑣[𝑠𝑎𝑣𝑒𝑑]
1 , … , 𝑣[𝑠𝑎𝑣𝑒𝑑]

𝑞 }.
Compute the concentration ratio with respect to the unperturbed problem:

𝛽 ∶= 𝑢∗K[0]𝑢
𝑢∗𝑢

.

Add complex scaling/orthonormalization.
if ∣𝛽 − 𝜆𝑞(0)∣ ≤ 𝜂 then

𝑣[𝑠𝑎𝑣𝑒𝑑]
𝑞 ← 𝑢/‖𝑢‖.

𝛼[𝑠𝑎𝑣𝑒𝑑]
𝑞 ← 𝛽.

𝑞 ← 𝑞 + 1.
end if
Stop if 𝑞 > 𝑀.

end for

Proof. Decompose 𝑤 into a unitary basis of 𝐴:

𝑤 =
𝑁

∑
𝑖=1

𝑐𝑖𝑣𝑖.

Then

𝑤∗𝐴𝑤 = (
𝑁

∑
𝑖=1

𝑐𝑖𝑣∗
𝑖 ) 𝐴 (

𝑁
∑
𝑗=1

𝑐𝑗𝑣𝑗) = (
𝑁

∑
𝑖=1

𝑐𝑖𝑣∗
𝑖 ) (

𝑁
∑
𝑗=1

𝑐𝑗𝜆𝑗𝑣𝑗)

=
𝑁

∑
𝑖,𝑗=1

𝑐𝑖𝑐𝑗𝜆𝑗𝑣∗
𝑖 𝑣𝑗 =

𝑁
∑
𝑖=1

|𝑐𝑖|2𝜆𝑖 ≤ 𝜆1

𝑁
∑
𝑖=1

|𝑐𝑖|2. (V-5.10)

To obtain the claim, it only suffices to recall that ∑𝑁
𝑖=1 |𝑐𝑖|2 = 𝑤∗𝑤 = 1, since {𝑣𝑗}𝑗

is
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an unitary basis of ℂ𝑁.

Lemma V.8

Let 𝐴 ∈ ℝ𝑁×𝑁 an Hermitian matrix, and denote {𝜆𝑖}
𝑁
𝑖=1 its eigenvalues (real), ordered

so that 𝜆𝑖 ≥ 𝜆𝑖+1. Let {𝑣1, … , 𝑣𝑁} an orthonormal basis of ℂ𝑁, where 𝑣𝑖 ∈ ℂ𝑁 is an
eigenvector of 𝐴 associated to 𝜆𝑖. Let 𝜂 > 0, 𝑤 ∈ ℂ𝑁 such that |𝑤|2 = 1, and

∣𝑤𝑇𝐴𝑤 − 𝜆1∣
2

≤ 𝜂.

Then
|𝑤 − 𝑣1|22 = 𝒪 ( 𝜂

𝜆1 − 𝜆2
)

Proof. There exist coefficients 𝑐1, … , 𝑐𝑁 ∈ ℂ𝑁 such that

𝑤 =
𝑁

∑
𝑖=1

𝑐𝑖𝑣𝑖.

Using (V-5.10), we get

𝜆1 − 𝑤𝑇𝐴𝑤 = 𝜆1 −
𝑁

∑
𝑖=1

|𝑐𝑖|2𝜆𝑖 = 𝜆1 (1 − |𝑐1|2) −
𝑁

∑
𝑖=2

|𝑐𝑖|2𝜆𝑖 ≥ 𝜆1 (1 − |𝑐1|2) − 𝜆2

𝑁
∑
𝑖=2

|𝑐𝑖|2.

We use the fact that |𝑤|2 = 1, which implies

𝑁
∑
𝑖=1

|𝑐𝑖|2 = 1,

hence

𝜆1 − 𝑤𝑇𝐴𝑤 ≥ 𝜆1 (1 − |𝑐1|2) − 𝜆2

𝑁
∑
𝑖=2

|𝑐𝑖|2 = 𝜆1 (1 − |𝑐1|2) − 𝜆2 (1 − |𝑐1|2)

= (𝜆1 − 𝜆2) (1 − |𝑐1|2) .

Using Lemma V.7, our assumption gives

𝜂 ≥ |𝑤𝑇𝐴𝑤 − 𝜆1|2 = 𝜆1 − 𝑤𝑇𝐴𝑤 ≥ (𝜆1 − 𝜆2) (1 − |𝑐1|2) ,

hence
1 ≥ |𝑐1|2 ≥ 1 − 𝜂

𝜆1 − 𝜆2
.
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Furthermore,

|𝑤 − 𝑣1|22 = ∣
𝑁

∑
𝑖=1

𝑐𝑖𝑣𝑖 − 𝑣1∣
2

2

= ∣(𝑐1 − 1)𝑣1 +
𝑁

∑
𝑖=2

𝑐𝑖𝑣𝑖∣
2

2

= |𝑐1 − 1|2 +
𝑁

∑
𝑖=2

|𝑐𝑖|2 = |𝑐1 − 1|2 + 1 − |𝑐1|2

= 2(1 − 𝑐1).

Up to a change of sign, we can assume 𝑐1 ≥ 0. Then,

|𝑤 − 𝑣1|22 ≤ 2 (1 − √1 − 𝜂
𝜆1 − 𝜆2

) ,

and thus, for 𝜂
𝜆1−𝜆2

small,

|𝑤 − 𝑣1|22 = 𝒪 ( 𝜂
𝜆1 − 𝜆2

)

One issue with Lemma V.8 is that it only cares about the first eigenpair. Fortunately,
a generalization is straightforward when we suppose the first eigenvalues to be packed
together, see Lemma V.9.

Lemma V.9

Let A ∈ ℝ𝑁×𝑁 an Hermitian matrix, and denote {𝜆𝑖}
𝑁
𝑖=1 its eigenvalues (real), ordered

so that 𝜆𝑖 ≥ 𝜆𝑖+1. Let {𝑣1, … , 𝑣𝑁} an orthonormal basis of ℂ𝑁, where 𝑣𝑖 ∈ ℂ𝑁 is an
eigenvector of A associated to 𝜆𝑖. Let 𝜂 > 0, 𝑤 ∈ ℂ𝑛 such that |𝑤|2 = 1, and

|𝑤∗A𝑤 − 𝜆1|2 ≤ 𝜂.

We assume 𝜆1 = 𝜆2 + 𝒪(𝜏) = ⋯ = 𝜆𝑚 + 𝒪(𝜏) for some 𝑚 ≤ 𝑁 and some 𝜏 > 0. Then

∣𝑤 − ProjSpan {𝑣1,…,𝑣𝑚}𝑤∣
2

2
= 𝒪 ( 𝜂 + 𝒪(𝜏)

𝜆1 − 𝜆𝑚+1
) .

Proof. Decompose 𝑤 into the {𝑣𝑖}𝑁
𝑖=1 basis:

𝑤 =
𝑁

∑
𝑖=1

𝑐𝑖𝑣𝑖,
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for some coefficients 𝑐𝑖 ∈ ℂ. We have

𝑤∗A𝑤 = (
𝑁

∑
𝑖=1

𝑐𝑖𝑣𝑇
𝑖 ) (

𝑁
∑
𝑗=1

𝑐𝑗𝜆𝑗𝑣𝑗) =
𝑁

∑
𝑖=1

|𝑐𝑖|2𝜆𝑖

= 𝜆1 (
𝑚

∑
𝑖=1

|𝑐𝑖|2) + 𝒪(𝜏)
𝑚

∑
𝑖=2

|𝑐𝑖|2 +
𝑁

∑
𝑖=𝑚+1

|𝑐𝑖|2𝜆𝑖

= 𝜆1 (
𝑚

∑
𝑖=1

|𝑐𝑖|2) + 𝒪(𝜏) +
𝑁

∑
𝑖=𝑚+1

|𝑐𝑖|2𝜆𝑖,

where the last equality is due to having |𝑤|2 = 1. Then

𝜆1 − 𝑤∗A𝑤 = 𝜆1 (1 −
𝑚

∑
𝑖=1

|𝑐𝑖|2) + 𝒪(𝜏) −
𝑁

∑
𝑖=𝑚+1

|𝑐𝑖|2𝜆𝑖

≥ 𝜆1 (1 −
𝑚

∑
𝑖=1

|𝑐𝑖|2) + 𝒪(𝜏) − 𝜆𝑚+1

𝑁
∑

𝑖=𝑚+1
|𝑐𝑖|2

≥ 𝜆1 (1 −
𝑚

∑
𝑖=1

|𝑐𝑖|2) + 𝒪(𝜏) − 𝜆𝑚+1 (1 −
𝑚

∑
𝑖=1

|𝑐𝑖|2)

≥ (𝜆1 − 𝜆𝑚+1) (1 −
𝑚

∑
𝑖=1

|𝑐𝑖|2) + 𝒪(𝜏),

and thus
1 −

𝑚
∑
𝑖=1

|𝑐𝑖|2 ≤ 𝜆1 − 𝑤∗A𝑤
𝜆1 − 𝜆𝑚+1

≤ 𝜂 + 𝒪(𝜏)
𝜆1 − 𝜆𝑚+1

.

We now compute

∣𝑤 − ProjSpan {𝑣1,…,𝑣𝑚}𝑤∣
2

2
= ∣

𝑁
∑

𝑖=𝑚+1
𝑐𝑖𝑣𝑖∣

2

2

=
𝑁

∑
𝑖=𝑚+1

|𝑐𝑖|2 = 1 −
𝑚

∑
𝑖=1

|𝑐𝑖|2 ≤ 𝜂 + 𝒪(𝜏)
𝜆1 − 𝜆𝑚+1

.

In Lemma V.9, the first eigenvalues are assumed to be bunched together while 𝜆1 −
𝜆𝑚+1 is supposedly large (i.e. 𝜆𝑚+1 is supposedly “far” from 𝜆1). This situation is close
to the framework exhibited in the spectral concentration problem, where eigenvalues are
close to zero or one and only a very small number of them being in between.

All the discussion until now was concerned with the one-dimensional problem of an
arbitrary Fourier mask 𝑚𝐹 and a space mask 𝑚𝑆, assumed of the form

𝑚𝑆 = 1𝐷1
, 𝑚𝐹 = 1𝐷2
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with 𝐷1 = [−1, 1] and 𝐷2 = [−Ω, Ω] The ideas explained are not specific to the one-
dimensional case, and we can apply them as well in the multidimensional case.

V-5.3.2 Dimension 𝑑 ≥ 1

We now suppose 𝐷1 to be a finite-volume subset of ℝ𝑑, 𝑑 ≥ 1. We are interested in
applying the same ideas as in the one-dimensional case, more specifically the fact that
studying the eigenproblem on a scaled version of 𝐷1 may help in having distinguishable
eigenvalues (and thus, obtaining eigenvectors easily).

We write 𝐷1(𝜀) a set-valued scaling such that

𝐷1(0) = 𝐷1, 𝐷1(𝜀1) ⊂ 𝐷1(𝜀2) for 𝜀1 > 𝜀2, and 𝐷1(+∞) = {0} .

When 𝜀 is small, |𝐷1(𝜀) − 𝐷1| is assumed to be small as well. Note the abuse of notation
here, where 𝐷1 denotes a subset of ℝ𝑑 and 𝐷1(⋅) a set-valued function.

Remark V.15

In the one-dimensional case, using the previously defined notations, we would have

𝐷1 = [−1, 1] and 𝐷1(𝜀) = [−𝜇(𝜀), 𝜇(𝜀)].

In the two-dimensional case, we give some examples of set-valued functions 𝐷1(𝜀) in
Figures V-5.10, V-5.11, and V-5.12.

We can check numerically in Figures V-5.13, V-5.14 and V-5.15 the fact that, when 𝜀 →
∞, the eigenvalues all converge to zero. This is expected from the eigenproblem (V-4.10),
because the support of 𝑚[𝜀]

𝑆 becomes closer and closer to a null set. See Remark V.5 for
more details. Since the behavior in the multidimensional case is qualitatively the same as
in the one-dimensional case, we can apply the same ideas in order to obtain approximate
eigenvectors: start from a large 𝜀 > 0, and look for the eigenvector associated to the largest
eigenvalue of K[𝜀]. If the concentration ratio of this vector with respect to the unscaled
matrix K[0] is close enough to the first eigenvalue of K[0], keep this vector 𝑣1. Otherwise,
decrease 𝜀 by a little amount and do the same steps. Once a vector has been saved,
we look for the second eigenvector associated to the second largest eigenvalue of K[𝜀],
with an orthogonality condition with respect to 𝑣1. The numerical procedure described in
Algorithm 7 simply consists in applying these steps as many times as necessary.
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(a) Disc(0, 0.8)
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(b) Set-valued function 𝐷1(𝜀), with 𝐷1 =
𝐷1(0) = Disc(0, 0.8).

Figure V-5.10 – The disc centered at origin and of radius 0.8, written Disc(0, 0.8), as
well as the set-valued function 𝐷1(𝜀), decreasing for the inclusion relation, and such that
𝐷1(0) = Disc(0, 0.8).
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(a) Star.
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(b) Set-valued function 𝐷1(𝜀), with 𝐷1 =
𝐷1(0) = Star.

Figure V-5.11 – A 5-branch star, as well as the set-valued function 𝐷1(𝜀), decreasing for
the inclusion relation, and such that 𝐷1(0) = Star.
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Algorithm 7 Varying space mask method (Dimension 𝑑 ≥ 1)
Require:

— 𝐷1(𝜀): a set-valued function, such that 𝐷1 ∶ 𝜀 ↦ 𝐷1(𝜀) is decreasing (for the relation
of set inclusion), 𝐷1(0) = 𝐷1, 𝐷1(+∞) = 0.

— 𝜀 ↦ K[𝜀]: the “scaled” concentration matrix, of size 𝑁 × 𝑁, with the space mask
being 𝑚[𝜀]

𝑆 = 1𝐷1(𝜀).
— 𝑀: number of eigenvectors we are looking for, 𝑀 ≤ 𝑁.
— 𝜀max: maximum value of the parameter 𝜀.
— {𝜀𝑇, … , 𝜀0} ⊂ [0, 𝜀max]: 𝑇 + 1 discretization points of the interval [0, 𝜀max] (can be a

uniform discretization, log-uniform, …). They are assumed to be such that 𝜀𝑡 > 𝜀𝑡−1,
𝑡 ∈ [[1, 𝑇 ]].

— 𝜆𝑎𝑝𝑝𝑟𝑜𝑥(0) = (𝜆𝑎𝑝𝑝𝑟𝑜𝑥,1(0), … , 𝜆𝑎𝑝𝑝𝑟𝑜𝑥,𝑁(0)): vector of approximate eigenvalues for
the nonperturbed matrix K[0].

— 𝜂: numerical tolerance to compare two eigenvalues.
𝑞 ∶= 0: this is the number of recorded eigenvectors.
𝛼𝑠𝑎𝑣𝑒𝑑 = (𝛼𝑠𝑎𝑣𝑒𝑑,1, … , 𝛼𝑠𝑎𝑣𝑒𝑑,𝑀): the vector to hold all the concentration ratios.
𝑣𝑠𝑎𝑣𝑒𝑑 = (𝑣𝑠𝑎𝑣𝑒𝑑,1, … , 𝑣𝑠𝑎𝑣𝑒𝑑,𝑀): the matrix to hold all the recorded eigenvectors
for 𝜀 = 𝜀𝑇, … , 𝜀0 do ▷ (i.e. first 𝜀 = 𝜀𝑇, then 𝜀 = 𝜀𝑇 −1, …, until 𝜀 = 𝜀0).

Find (𝜅, 𝑢) the most significant eigenpair of K[𝜀] (i.e. the one associated to the
eigenvalue of highest magnitude), where 𝑢 ⟂ Span {𝑣𝑠𝑎𝑣𝑒𝑑,1, … , 𝑣𝑠𝑎𝑣𝑒𝑑,𝑞}.

Compute the concentration ratio with respect to the unperturbed problem:

𝛽 ∶= 𝑢∗K[0]𝑢
𝑢∗𝑢

.

Add complex orthonormalization.
if ∣𝛽 − 𝜆𝑎𝑝𝑝𝑟𝑜𝑥,𝑞(0)∣ ≤ 𝜂 then

𝑣𝑠𝑎𝑣𝑒𝑑,𝑞 ← 𝑢/‖𝑢‖.
𝛼𝑠𝑎𝑣𝑒𝑑,𝑞 ← 𝛽.
𝑞 ← 𝑞 + 1.

end if
Stop if 𝑞 > 𝑀.

end for
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(a) Cat-head shape.
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(b) Set-valued function 𝐷1(𝜀), with 𝐷1 =
𝐷1(0) = Cat-head.

Figure V-5.12 – A (poorly drawn) cat-head shape, as well as the set-valued function 𝐷1(𝜀),
decreasing for the inclusion relation, and such that 𝐷1(0) = Cat-head.

Remark V.16

In practice, obtaining the “exact” eigenvalues 𝜆𝑖(0) (i.e. up to machine precision)
can be difficult if the matrix is large in Algorithm 7. This is purely a problem of
computational power available, which we did not mention in dimension one but would
occur if 𝑁 is really large. In dimension two and higher, this problem quickly occurs
and this is why we mention it here, and also why we used approximate eigenvalues
𝜆𝑎𝑝𝑝𝑟𝑜𝑥,𝑖 in Algorithm 7. In Algorithm 6, one can understand the “true” eigenvalues
as approximate eigenvalues for which the approximation error is of the order of the
machine epsilon. In order to obtain the approximate eigenvalues, one can for instance
perform an iterative search of eigenvalues (e.g. the power method) and stop whenever
the convergence of eigenvalue is considered good enough. A simple criterion could be
when the difference between one approximation and the next one is smaller than some
threshold. In our numerical experiments, we looked for approximate eigenvalues such
that |𝜆𝑎𝑝𝑝𝑟𝑜𝑥,𝑖 − 𝜆𝑖(0)| ≤ 𝜂, hence

∣𝛼𝑠𝑎𝑣𝑒𝑑,𝑖 − 𝜆𝑖(0)∣ ≤ 2𝜂.

288



V-5.3. Varying the space mask

0 10 20 30 40 50
λn

0.00

0.25

0.50

0.75

1.00
ε= 2.00E+00
ε= 1.58E+00
ε= 1.26E+00
ε= 1.00E+00
ε= 0.00E+00

Figure V-5.13 – The 50 first largest eigenvalues of the concentration matrix K[𝜀], for
several values of 𝜀. We recall that the space mask used for K[𝜀] is 𝑚[𝜀]

𝑆 = 1𝐷1(𝜀). The set-
valued function 𝐷1(𝜀) is illustrated in Figure V-5.10. The Fourier space mask used here
is 𝑚𝐹 = 1Disc(0,0.1⋅2𝜋). 𝑁1 = 𝑁2 = 50 discretization points were used in each dimension.
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Figure V-5.14 – The 50 first largest eigenvalues of the concentration matrix K[𝜀], for
several values of 𝜀. We recall that the space mask used for K[𝜀] is 𝑚[𝜀]

𝑆 = 1𝐷1(𝜀). The set-
valued function 𝐷1(𝜀) is illustrated in Figure V-5.11. The Fourier space mask used here
is 𝑚𝐹 = 1Disc(0,0.1⋅2𝜋). 𝑁1 = 𝑁2 = 50 discretization points were used in each dimension.
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Figure V-5.15 – The 50 first largest eigenvalues of the concentration matrix K[𝜀], for
several values of 𝜀. We recall that the space mask used for K[𝜀] is 𝑚[𝜀]

𝑆 = 1𝐷1(𝜀). The set-
valued function 𝐷1(𝜀) is illustrated in Figure V-5.12. The Fourier space mask used here
is 𝑚𝐹 = 1Disc(0,0.1⋅2𝜋). 𝑁1 = 𝑁2 = 50 discretization points were used in each dimension.

V-5.3.3 Numerical results

We present in this section the numerical results obtained with the procedure con-
sisting in modifying the boundaries of the space mask. In dimension one, this procedure
is described by Algorithm 6, and for dimension two by Algorithm 7 (which is simply a
multidimensional generalization of Algorithm 6).

One-dimensional intervals

We give in Figure V-5.17 the first twelve eigenpairs of K[0], with a Fourier restriction
to [−Ω, Ω], Ω = 0.1 ⋅ 2𝜋, and a space restriction to [−1, 1] with 𝑁 = 100 discretization
points in space. The solid blue curve gives the eigenvectors obtained using a classical
eigenalgorithm, while the dash orange lines give the reference eigenvectors obtained from
Slepian’s commuting operator approach. We can see that the first seven solid blue eigen-
vectors seem like combinations of the dash orange ones. For 𝑛 ≥ 8, the eigenvalues 𝜆𝑛 are
sufficiently far from one so that they are numerically distinct.

Slepian et al. showed in [46] that all eigenvalues of the toy model are unique, and one
can then deduce from the toy-model kernel (V-2.2) that eigenfunctions are either even
or odd. This can be understood as a specialized version of the symmetry Lemma V.4 in
dimension one. This is also a proof that in this case, a direct eigendecomposition yields
wrong eigenvectors: indeed, the eigenvectors recovered with a direct eigendecomposition
are neither even nor odd.
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(b) First twelve exact eigenvalues (up to ma-
chine precision).

Figure V-5.16 – Eigenvalues and coefficient expansions for 𝑁 = 100 and Ω = 0.1 ⋅ 2𝜋,
obtained with a classical eigendecomposition.

Let us check that the solid blue curves are indeed linear combinations of the dash
orange curves, for the eigenvectors with indices 1 and 12. Let us denote by {𝜓𝑛}𝑁

𝑛=1 the
eigenvector basis that one obtains from the solution given by Slepian, and {𝜆𝑛}𝑁

𝑛=1 the
corresponding eigenvalues (or concentration ratios). Let {𝑣𝑛}𝑁

𝑛=1 the eigenvectors obtained
with a direct eigendecomposition. Since {𝜓𝑛}𝑁

𝑛=1 is a basis of ℝ𝑁, we can decompose

𝑣𝑗 =
𝑁

∑
𝑖=1

𝑐𝑗
𝑖 𝜓𝑖.

Due to the numerical confusion among eigenvalues very close to 1, we expect that most
expansion coefficients 𝑐1

𝑖 are nonzero for 𝑖 = 1, … , 𝐼, and then all zero. This index 𝐼 is
the largest index such that a computer mistakes 𝜆𝐼 for 𝜆1. We know that 𝐼 ≤ ⌊𝑁Ω

𝜋 ⌋, and
this upper bound is drawn using a vertical line. On the other hand, we expect 𝑐12

12 ≈ 1.
We give in Figure V-5.16a the expansion coefficients {𝑐1

𝑖 }𝑖 and {𝑐12
𝑖 }𝑖 of 𝑣1 and 𝑣12 into

the ℝ𝑁 basis {𝜓𝑛}𝑁
𝑛=1, and we can check that our intuition was indeed correct. In Figure

V-5.16b, we display the eigenvalues corresponding to the eigenvectors {𝑣𝑖}
12
𝑖=1, obtained

with a classical eigendecomposition.

On the other hand, Figure V-5.18 gives the approximate eigenvectors obtained using
the varying space mask procedure. They are qualitatively much closer to the reference
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eigenvectors, and in particular exhibit the correct number of “bumps”. They are also
more concentrated around the origin than expected, but this is due to the fact that the
space mask gets larger and larger symetrically from the origin, so the blue eigenvectors
displayed do not correspond exactly to the space mask 1[−1,1] but to 1[−𝜇(𝜀𝑛),𝜇(𝜀𝑛)], for
some 𝜀𝑛 > 0 (and thus for some 𝜇(𝜀𝑛) < 1).
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Figure V-5.17 – First 12 eigenpairs with an eigendecomposition of K[0] (solid blue curve),
in 1D, with 𝑁 = 100, Ω = 0.1 ⋅ 2𝜋. The exact eigenvectors are given by orange dash
curves.
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Figure V-5.18 – First 12 eigenpairs with the varying spacemask procedure (solid blue
curve), in 1D, with 𝑁 = 100, Ω = 0.1 ⋅ 2𝜋. The exact eigenvectors are given by orange
dash curves.

Two-dimensional examples

All the two-dimensional examples we present here are Fourier restricted to the same
two-dimensional ball, written as Disc(𝑐, Ω) to denote a disc centered at 𝑐 ∈ ℝ𝑑 with
radius Ω > 0. For the results shown, we have chosen 𝑐 = (0, 0) and Ω = 0.3, i.e.
𝑚𝐹,2𝜋 = 1Disc(0,0.3). For the 𝜀-discretization, we have used a log-uniform discretization of
the interval [10−3, 101] containing 500 points.
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In the following, we give the results obtained with three differents space masks (disc,
cat-head, and star), and for each example we show four figures:

— the first figure gives twelve eigenvectors corresponding to the sixteen largest eigen-
values of K[0], obtained using a classical eigenalgorithm;

— the second figure shows the Fourier transform of the approximate eigenvectors
obtained with a classical eigenalgorithm;

— the third figure shows twelve approximate eigenvectors corresponding to the twelve
largest eigenvalues of K[0], obtained using the varying space mask procedure de-
scribed by Algorithm 7;

— the fourth figure shows the Fourier transform of the approximate eigenvectors
obtained with the varying mask procedure.

For each space mask, the results are:
— 𝐷1 = Disc(0, 0.8): Figures V-5.19, V-5.20, V-5.21, V-5.22. The set-valued function

𝐷1(𝜀) that we used, such that 𝐷1(0) = Disc(0, 0.8), is illustrated in Figure V-5.10.
— 𝐷1 = Star: Figures V-5.25, V-5.26, V-5.27, V-5.28. The set-valued function 𝐷1(𝜀)

that we used, such that 𝐷1(0) = Star, is illustrated in Figure V-5.11.
— 𝐷1 = Cat-head: Figures V-5.31, V-5.32, V-5.33, V-5.34. The set-valued function

𝐷1(𝜀) that we used, such that 𝐷1(0) = Cat-head, is illustrated in Figure V-5.12.
The first thing to see for each example is that the eigenvectors are indeed zero on

𝐷𝐶
1 = ℝ𝑑 \ 𝐷1, for both the exact and approximate eigenvectors. The second thing to

see is that the Fourier transform of the approximate eigenvectors are indeed concentrated
with respect to the Fourier mask Disc(0, 0.3). The third thing to notice is that a straight-
forward eigendecomposition of the matrices K[0] yields eigenvectors that look like linear
combinations of the “simpler” ones obtained via Algorithm 7.

We can also see the simple and multiple eigenvalues: by Lemma V.4, the eigenfunctions
associated to simple eigenvalues must recover all symmetries present in the masks. For
multiple eigenvalues, it is expected that all symmetries cannot be recovered.

In the case 𝐷1 = Disc(0, 0.8), the types of eigenvectors predicted by Slepian are
polar ones of the form (𝑟, 𝜃) ↦ 𝑅(𝑟) cos(𝑚𝜃) or 𝑅(𝑟) sin(𝑚𝜃) with 𝑚 ≥ 0. They are
not recovered via a direct eigendecomposition, but they are with the varying space mask
procedure. In the cases 𝐷1 = Star and 𝐷1 = Cat-head, we know nothing about the
multiplicity of eigenvalues or expected form of eigenvectors. Therefore, we can’t expect
eigenvectors to recover all symmetries of the space mask. However, the numerical results
show that, for most eigenvectors, we get some of the symmetries that are present in
the space mask but not all of them, therefore they must correspond to eigenvalues of
multiplicity 𝑝 > 1. There are also some eigenvectors exhibiting all symmetries, and we
conjecture that they correspond to eigenvalues of multiplicity 𝑝 = 1.
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The varying space mask procedure only yields approximate eigenvectors for the matrix
K[0], but their concentration ratio is 2𝜂-close to the true eigenvalues (i.e. the concentration
ratio of the exact eigenvectors), they have the advantage of recovering various symmetries
that are present in 𝐷1, and they do not depend on the eigenalgorithm used (as opposed
to the straightforward eigendecomposition, see Section V-2.2.3 – Numerical difficulties).
They are also visually more appealing!

In all of our two-dimensional numerical examples, we have used 50 points of dis-
cretization along each dimension. This choice was made in order to be able to compute
approximate eigenvectors relatively quickly on a regular laptop. Most of the computa-
tional work is spent finding the first eigenpair of a given matrix, and this could surely
be accelerated using GPU and parallel computations. This is not a direction we have
explored.
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Figure V-5.19 – First 16 eigenpairs of K[0], obtained with a classical eigendecomposition
in 2D, with 𝜂 = 10−5, 𝑚𝐹,2𝜋 = 1Disc(0,0.3), and 𝑚[𝜀]

𝑆 = 1𝐷1(𝜀) with 𝐷1(0) = Disc(0, 0.8).
The mapping 𝜀 ↦ 𝐷1(𝜀) is illustrated in Figure V-5.10, and the boundary of 𝐷1(0) =
Disc(0, 0.8) is outlined in gray. 𝑁1 = 50, 𝑁2 = 50.
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Figure V-5.20 – Absolute value of the Fourier transform of the first 16 eigenpairs of K[0],
obtained with a classical eigendecomposition in 2D, with 𝜂 = 10−5, 𝑚𝐹,2𝜋 = 1Disc(0,0.3),
and 𝑚[𝜀]

𝑆 = 1𝐷1(𝜀) with 𝐷1(0) = Disc(0, 0.8). The mapping 𝜀 ↦ 𝐷1(𝜀) is illustrated in
Figure V-5.10 and the boundary of Disc(0, 0.3) is outlined in gray. 𝑁1 = 50, 𝑁2 = 50.
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Figure V-5.21 – First 16 eigenpairs of K[0], obtained with the varying mask procedure in
2D, with 𝜂 = 10−5, 𝑚𝐹,2𝜋 = 1Disc(0,0.3), and 𝑚[𝜀]

𝑆 = 1𝐷1(𝜀) with 𝐷1(0) = Disc(0, 0.8).
The mapping 𝜀 ↦ 𝐷1(𝜀) is illustrated in Figure V-5.10, and the boundary of 𝐷1(0) =
Disc(0, 0.8) is outlined in gray. 𝑁1 = 50, 𝑁2 = 50.
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Figure V-5.22 – Absolute value of the Fourier transform of the first 16 eigenpairs of K[0],
obtained with the varying mask procedure in 2D, with 𝜂 = 10−5, 𝑚𝐹,2𝜋 = 1Disc(0,0.3), and
𝑚[𝜀]

𝑆 = 1𝐷1(𝜀) with 𝐷1(0) = Disc(0, 0.8). The mapping 𝜀 ↦ 𝐷1(𝜀) is illustrated in Figure
V-5.10 and the boundary of Disc(0, 0.3) is outlined in gray. 𝑁1 = 50, 𝑁2 = 50.

299



Part V, Chapter V-5 – I like to move it move it

2 4 6 8 10 12 14 16

8.0

8.5

9.0

9.5

10.0
×10−5+9.999 × 10−1 Re(𝜆𝑛)

Figure V-5.23 – Eigenvalues with a direct decomposition, in the case 𝐷1(0) = Disc(0, 0.8).
They are the exact eigenvalues up to some tolerance 𝜂 = 10−5.
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Figure V-5.24 – Eigenvalues obtained with the varying spacemask procedure, in the case
𝐷1(0) = Disc(0, 0.8). They are the exact eigenvalues up to some tolerance 𝜂 = 10−5.
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Figure V-5.25 – First 16 eigenpairs of K[0], obtained with a classical eigendecomposition, in
2D with 𝜂 = 10−5, 𝑚𝐹,2𝜋 = 1Disc(0,0.3), 𝑚[𝜀]

𝑆 = 1𝐷1(𝜀) with 𝐷1(0) = Star and 𝜀 ↦ 𝐷1(𝜀)
is illustrated in Figure V-5.11. 𝑁1 = 50, 𝑁2 = 50. The boundary of 𝐷1(0) = Star is
outlined in gray.
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Figure V-5.26 – Absolute value of the Fourier transform of the first 16 eigenpairs of K[0],
obtained with a classical eigendecomposition, in 2D with 𝜂 = 10−5, 𝑚𝐹,2𝜋 = 1Disc(0,0.3),
𝑚[𝜀]

𝑆 = 1𝐷1(𝜀) with 𝐷1(0) = Star and 𝜀 ↦ 𝐷1(𝜀) is illustrated in Figure V-5.11. 𝑁1 = 50,
𝑁2 = 50. The boundary of Disc(0, 0.3) is outlined in gray.
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Figure V-5.27 – First 16 eigenpairs of K[0], obtained with the varying mask procedure
in 2D, with 𝜂 = 10−5, 𝑚𝐹,2𝜋 = 1Disc(0,0.3), and 𝑚[𝜀]

𝑆 = 1𝐷1(𝜀) with 𝐷1(0) = Star. The
mapping 𝜀 ↦ 𝐷1(𝜀) is illustrated in Figure V-5.11, and the boundary of 𝐷1(0) = Star is
outlined in gray. 𝑁1 = 50, 𝑁2 = 50.
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Figure V-5.28 – Absolute value of the Fourier transform of the first 16 eigenpairs of K[0],
obtained with the varying mask procedure in 2D, with 𝜂 = 10−5, 𝑚𝐹,2𝜋 = 1Disc(0,0.3), and
𝑚[𝜀]

𝑆 = 1𝐷1(𝜀) with 𝐷1(0) = Star. The mapping 𝜀 ↦ 𝐷1(𝜀) is illustrated in Figure V-5.11
and the boundary of Disc(0, 0.3) is outlined in gray. 𝑁1 = 50, 𝑁2 = 50.
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Figure V-5.29 – Eigenvalues with a direct decomposition, in the case 𝐷1(0) = Star. They
are the exact eigenvalues up to some tolerance 𝜂 = 10−5.
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Figure V-5.30 – Eigenvalues obtained with the varying spacemask procedure, in the case
𝐷1(0) = Star. They are the exact eigenvalues up to some tolerance 𝜂 = 10−5.
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Figure V-5.31 – First 16 eigenpairs of K[0], obtained with a classical eigendecomposition,
in 2D with 𝜂 = 10−5, 𝑚𝐹,2𝜋 = 1Disc(0,0.3), 𝑚[𝜀]

𝑆 = 1𝐷1(𝜀) with 𝐷1(0) = Cat-head and
𝜀 ↦ 𝐷1(𝜀) is illustrated in Figure V-5.12. 𝑁1 = 50, 𝑁2 = 50. The boundary of 𝐷1(0) =
Cat-head is outlined in gray.
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Figure V-5.32 – Absolute value of the Fourier transform of the first 16 eigenpairs of K[0],
obtained with a classical eigendecomposition, in 2D with 𝜂 = 10−5, 𝑚𝐹,2𝜋 = 1Disc(0,0.3),
𝑚[𝜀]

𝑆 = 1𝐷1(𝜀) with 𝐷1(0) = Cat-head and 𝜀 ↦ 𝐷1(𝜀) is illustrated in Figure V-5.12.
𝑁1 = 50, 𝑁2 = 50. The boundary of Disc(0, 0.3) is outlined in gray.
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Figure V-5.33 – First 16 eigenpairs of K[0], obtained with the varying mask procedure in
2D, with 𝜂 = 10−5, 𝑚𝐹,2𝜋 = 1Disc(0,0.3), and 𝑚[𝜀]

𝑆 = 1𝐷1(𝜀) with 𝐷1(0) = Cat-head. The
mapping 𝜀 ↦ 𝐷1(𝜀) is illustrated in Figure V-5.12, and the boundary of 𝐷1(0) = Cat-head
is outlined in gray. 𝑁1 = 50, 𝑁2 = 50.
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Figure V-5.34 – Absolute value of the Fourier transform of the first 16 eigenpairs of K[0],
obtained with the varying mask procedure in 2D, with 𝜂 = 10−5, 𝑚𝐹,2𝜋 = 1Disc(0,0.3), and
𝑚[𝜀]

𝑆 = 1𝐷1(𝜀) with 𝐷1(0) = Cat-head. The mapping 𝜀 ↦ 𝐷1(𝜀) is illustrated in Figure
V-5.12 and the boundary of Disc(0, 0.3) is outlined in gray. 𝑁1 = 50, 𝑁2 = 50.
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Figure V-5.35 – Eigenvalues with a direct decomposition, in the case 𝐷1(0) = Cat-head.
They are the exact eigenvalues up to some tolerance 𝜂 = 10−5.
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Figure V-5.36 – Eigenvalues obtained with the varying spacemask procedure, in the case
𝐷1(0) = Cat-head. They are the exact eigenvalues up to some tolerance 𝜂 = 10−5.
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In this Chapter we will discuss some numerical aspects of the concentration problem.

V-6.1 Leveraging the Toeplitz nature of the kernel

The fact that the concentration K as defined (V-4.13) is a block matrix where each
block is a Toeplitz matrix, is interesting from the numerical point of view. The most
interesting property for us is that the matrix-vector products can be done efficiently, both
in memory and complexity. This is done by first transforming the Toeplitz matrix into
a circulant matrix, and then computing efficient matrix-vector products for the circulant
matrix.

First, let us recall what is a Toeplitz matrix: 𝑇 ∈ ℳ𝑛1,𝑛2
(ℂ) is said to be Toeplitz if

it is of the form

𝑇 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑡0 𝑡−1 𝑡−2 … … 𝑡−𝑛2+1

𝑡1 𝑡0 ⋱ ⋱ ⋮
𝑡2 ⋱ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ 𝑡−2

⋮ ⋱ ⋱ ⋱ 𝑡−1

𝑡𝑛1−1 … … 𝑡2 𝑡1 𝑡0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

In other words, 𝑇𝑖,𝑗 is constant for 𝑖 − 𝑗 constant. The matrix 𝑇 can be described using
only its first row {𝑡𝑘}𝑘=0,…,−𝑛2+1 and first column {𝑡𝑘}𝑘=0,…,𝑛1−1. A circulant matrix is a
particular case of a square Toeplitz matrix: 𝐶 ∈ ℳ𝑛,𝑛(ℂ) is said to be a circulant matrix
if it can be written as

𝐶 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑐0 𝑐𝑛−1 𝑐𝑛−2 … … 𝑐1

𝑐1 𝑐0 ⋱ ⋱ ⋮
𝑐2 ⋱ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ 𝑐𝑛−2

⋮ ⋱ ⋱ 𝑐0 𝑐𝑛−1

𝑐𝑛−1 … … 𝑐2 𝑐1 𝑐0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

It is a square Toeplitz matrix of size 𝑛 with the additinal property that 𝑡𝑖 = 𝑡𝑖+𝑛. For
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𝑏 ∈ ℂ𝑛,

(𝐶𝑏)𝑖 =
𝑛−1
∑
𝑗=0

𝑐𝑖−𝑗𝑏𝑗.

That is, the left multiplication by the circulant matrix 𝐶 corresponds to a circular con-
volution between the vector (𝑐𝑖)𝑛

𝑖=1 and the vector 𝑏. By means of the Fourier transform,
we get

(𝐶𝑏)𝑖 = ℱ−1[ℱ[𝑐]ℱ[𝑏]]𝑖,

where the product ℱ[𝑐]ℱ[𝑏] is performed component by component.
Hence, a matrix-vector product between a circulant matrix and a given vector can be

done using the Fourier transform. If this product was performed with no prior knowledge
on 𝐶, it would require 𝒪(𝑛2) operations and 𝒪(𝑛2) memory space. By knowing that the
matrix 𝐶 is circulant, we only need 𝒪(𝑛 log 𝑛) operations 1 and 𝒪(𝑛) memory space.

Given a Toeplitz matrix 𝑇, we can create a circulant matrix 𝑀𝐶 of twice the size, with
the same information. The first row of this matrix 𝑀𝐶 (which is enough to completely
define it) is:

𝑟 ∶= (𝑡0, 𝑡1, ⋯ , 𝑡𝑛−1, 0, 𝑡−𝑛+1, ⋯ , 𝑡−1) ∈ ℂ2𝑛.

The matrix 𝑀𝐶 then has the following shape:

𝑀𝐶 = (
𝑇 𝐴
𝐴 𝑇

) ,

where

𝐴 ∶=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 𝑡𝑛−1 ⋯ 𝑡2 𝑡1

𝑡−𝑛+1 ⋱ ⋱ 𝑡2

⋮ ⋱ ⋱ ⋱ ⋮
𝑡−2 ⋱ ⋱ 𝑡𝑛−1

𝑡−1 𝑡−2 ⋯ 𝑡−𝑛+1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Now, for a vector 𝑣 ∈ ℂ𝑛,

(𝐼𝑛 0) 𝑀𝐶 (
𝑣

0𝑛
) = (𝐼𝑛 0) (

𝑇 𝐴
𝐴 𝑇

) (
𝑣

0𝑛
) = (𝐼𝑛 0) (

𝑇 𝑣
𝐴𝑣

) = 𝑇 𝑣.

The product

𝑀𝐶 (
𝑣

0𝑛
)

is a matrix-vector product between the circulant matrix 𝑀𝐶 and a vector, so it can be

1. We implicitely use the Fast Fourier Transform to obtain this numerical complexity.
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done in 𝒪(𝑛 log 𝑛) operations with 𝒪(𝑛) memory storage. The product

(𝐼𝑛 0) (
𝑇 𝑣
𝐴𝑣

)

simply consists in selecting the first 𝑛 lines of (
𝑇 𝑣
𝐴𝑣

), so it can be done in only 𝒪(𝑛)

operations and memory storage.
This procedure thus shows that a matrix-vector product can be done in 𝒪(𝑛 log 𝑛)

operations and 𝒪(𝑛) memory storage when the matrix is Toeplitz, by making use of the
Fast Fourier Transform.

When we apply this to the concentration matrix K as defined in (V-4.14), there are 𝑁2
1

Toeplitz blocks of size 𝑁2 × 𝑁2. This results in 𝒪(𝑁2
1 𝑁2 log 𝑁2) operations for a product

K𝑣, to be compared with 𝒪(𝑁2
1 𝑁2

2 ) operations without using the Toeplitz nature of each
block. There is also a gain for the memory storage: instead of storing the whole matrix
K, with a memory usage of order 𝒪(𝑁2

1 𝑁2
2 ), it is sufficient to store two vectors of size 𝑁2

for each one of the 𝑁2
1 blocks. Thus, an efficient memory usage of order 𝒪(𝑁2

1 𝑁2).

313



Part V
C

H
A

P
T

E
R 7 Conclusion

In this Part we started by reviewing the so-called Spectral Concentration problem. It
is a problem popularized by Slepian and co-authors in the 1960s and 1970s. In a series
of five papers, they obtained a very elegant solution for the one- and many-dimensional
cases, as well as for the discrete case. Most of the subsequent work by other authors have
used their results, and stayed within the framework set up during the 1960s and 1970s.
The authors who tried to generalize the spectral concentration problem in the past have
failed to find an equally elegant solution. This Part is not the end of never-ending series
of failed attemps, we failed as well in this regard.

Since an elegant, theoretical solution could not be found, people have tried to find
a numerical solution. In order to do this, they started by discretizing the concentration
operator 𝒦, in order to look for its eigenvectors and eigenvalues. In most situations, they
used settings where they did not observe the main issue appearing with a discretization
of the operator 𝒦. More precisely, when the number of discretization points is too large,
the highest eigenvalues gather very close to 1, and they cannot be distinguished anymore.
Therefore, 1 looks like a multiple eigenvalue. This may not seem like a problem if one
is only interested in eigenvalues, but it quickly becomes one if we are also interested in
associated eigenvectors. Indeed, we are numerically looking for a basis of eigenvectors
associated to a multiple eigenvalue. Therefore, one algorithm usually used to perform an
eigendecomposition will yield a result, but another algorithm will yield another result.
Both results are valid from the computer’s point of view because the eigenvalues are too
close to be distinguished, but they are not valid to us, since we get two different results
for the same inputs.

This instability led us to study a generalized spectral concentration problem. After
setting the theoretical foundations and obtaining a generalized concentration operator 𝒦
(note the abuse of notation here), we discretized it. We observed again the same behavior
of eigenvalues for previously unstudied situations. After this, we showed that 1 is not a
multiple eigenvalue but only several distinct eigenvalues very close to 1, and that adding
a perturbation to 𝒦 allowed to perturb the eigenvalues as well.

Armed with physical intuition and interpretation of the spectral concentration prob-
lem, we managed to find an algorithm that bypasses the seemingly multiple eigenvalue,

314



and which yields satisfying, deterministic eigenvectors. This algorithm works by shrinking
and unshrinking the space mask little by little, and capturing the eigenvectors as soon
as they are “satisfying enough”. We observed that the results this algorithm yields are
not exactly the same as the results obtained by Slepian, but they are equally satisfying
and do not rely on an “accidental property” of the concentration operator. Therefore, we
could study approximate solutions to the generalized spectral concentration problem on
previously unstudied situations.

Note that we only considered a Cartesian discretization of space and Fourier domains.
If one only considers a binary mask in Fourier restricted to a two-dimensional ball, the
Fourier kernel is known analytically. In this case, one can use the Gauss-Legendre integra-
tion method, as presented for instance in [42, 44]. We can hope that it would reduce the
computational complexity and required grid points, while attaining a satisfying accuracy.
It may however be troublesome to compute the kernel 𝐾 is one considers arbitrary binary
restrictions in Fourier and space, and a uniform discretization of the space and Fourier
domain would then be the way to go for general problems.
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This is now in the last Part of the manuscript. Each Part is decorrelated from the
others, so it wouldn’t make much sense to recall here our main results and perspectives.
We refer to Chapters III-6, IV-5 and V-7 for detailed discussions. However, we can give a
brief summary of each Part.

In Part III, we have studied the Vlasov-Poisson system for plasma dynamics. More
specifically, we have proved a convergence estimate for a gridfree particle method that
was first introduced by Barré, Olivetti and Yamaguchi in 2011. It is called Weighted
Particle method. It can be understood as being halfway between between Semi-Lagrangian
and particle schemes. Unfortunately, no proof of convergence had been given when the
Weighted Particle method was introduced, and the goal here was to obtain an error
bound. It was relatively easy to do since the method is composed of fundational well-
studied components, and we just had to gather the error bounds for each part. We also
assessed the efficiency of the method on one-dimensional standard examples. This work
has been published in a peer-reviewed journal.

In Part IV, we studied a numerical scheme for the Schrödinger equation. We started
from several theoretical works which focused on modulation techniques, and we devised
a numerical algorithm by using these techniques. The theoretical works are due to Faou,
Martel, Merle and Raphaël. We saw that the modulation is very efficient when applied to
the linear Schrödinger equation with quadratic potential, and yields the exact solution.
Then, we tried to add a nonlinearity to the Schrödinger equation, and studied the cubic
nonlinear Schrödinger equation. Unfortunately, the modulation couldn’t be applied fully
on this equation, and we had to resort to splitting techniques. We split the equation into
its linear and nonlinear parts. The linear part was solved exactly using modulation, while
the nonlinear part was approximately solved using the Dirac-Frenkel principle. To the best
of our knowledge, this work is the first account of the Dirac-Frenkel principle being used
in a nonlinear setting. We finally studied the results on some numerical examples, and we
observed that the results were sometimes unsatisfying based on the initial condition. More
precisely, we exhibited an initial condition where the Dirac-Frenkel principle worked well
and yielded satisfying results, and one other initial condition for which it didn’t work.
The issues observed with the Dirac-Frenkel principle are not newly observed issues, and
were already observed in some previous works.

Finally, in Part V, we studied the Spectral Concentration problem. It has been popu-
larized by Slepian, Landau and Pollak in the 1960s and 1970s, and then found numerous
applications in diverse fields of science. The problem they studied was relatively restric-
tive, but their solution was very elegant. Very few works have been concerned with a
similar problem in different settings. After explaining why the problem was difficult from
the theoretical and numerical points of view, we studied the numerical aspect. Using the

318



physical intuition and interpretation of the problem, we have obtained an algorithm that
bypasses the issues of a direct and straightforward approach. We compared the results
of this algorithm in the well-studied framework, and observed that we obtain relatively
satisfying approximations of the expected solutions. We then applied the algorithm to pre-
viously unstudied examples, and also observed that it yielded results much more satisfying
than those of a direct and straightforward approach.

As a side-note, the ideas used in this Algorithm could probably be adapted to a more
general context and are not necessarily restricted to the spectral concentration problem.
Deep down, the numerical issues we overcame are numerical linear algebra problems.
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Titre : Méthodes particulaires modulées et ordres élevés.

Mots clés : Vlasov-Poisson, Schrödinger, Slepian, méthodes numériques, équations différen-
tielles partielles

Résumé : Dans cette thèse trois grands
axes ont été étudiés. Le premier concerne
le système de Vlasov-Poisson, pour lequel
la convergence d’une méthode particulaire
a été démontrée. Cette méthode particulaire
fait en quelque sorte le lien entre les mé-
thodes semi-lagrangiennes et celle du type
PIC. La simplicité de cette méthode réside
dans le fait qu’elle se base sur des briques
existantes bien connues.

Le second axe étudié traite de l’équation
de Schrödinger. En se basant sur des tra-
vaux récents de Faou, Merle et Raphaël, un
algorithme de modulation est proposé pour
la simulation numérique de l’oscillateur har-

monique. En utilisant le principe de Dirac-
Frenkel, cet algorithme a pu être étendu au
cas de l’équation de Schrödinger cubique
non linéaire.

Enfin, le troisième et dernier axe de cette
thèse parle du problème de concentration
spectrale, aussi appelé problème de Slepian.
Des outils ont été mis en place pour étendre
les travaux de Landau, Pollak et Slepian, et
des soucis importants d’ordre numérique ont
été illustrés. Un algorithme est proposé afin
de résoudre approximativement le problème
de façon plus robuste qu’une discrétisation
directe.

Title: Modulated particle methods and high orders.

Keywords: Vlasov-Poisson, Schrödinger, Slepian, numerical methods, partial differential equa-
tions

Abstract: This thesis is made of three
distinct parts. The first one concerns the
Vlasov-Poisson system, for which the con-
vergence of a particle method has been
shown. It makes a sort of link between semi-
Lagrangian methods and those of PIC-type.
The simplicity of this numerical method lies
in the fact that it is composed of well-studied
building blocks.

The second part is about the Schrödinger
equation. Based on recent works by Faou,
Merle and Raphaël, a modulation algorithm
is proposed for the numerical simulation of

the harmonic oscillator. By using the Dirac-
Frenkel principle, this algorithm has been ex-
tended to the cubic nonlinear Schrödinger
equation.

Last but not least, the third part of this
thesis treats the spectral concentration prob-
lem, also known as the Slepian problem. We
extended the framework studied by Landau,
Pollak and Slepian, and illustrated important
numerical issues. An algorithm is proposed
in order to solve approximately the problem
in a more robust way than a straightforward
discretization.
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